Question Solved1 Answer A tank is used to mix sugar solutions for use in making candies at a factory. The tank initially holds 50 gallons of pure water. Two pipes that flow into the tank and a third pipe that flows out of the tank are opened. The first pipe has a solution of 2 pounds of sugar per gallon and flows into the tank at a rate of 6 gallons per minute. The second pipe has A tank is used to mix sugar solutions for use in making candies at a factory. The tank initially holds 50 gallons of pure water. Two pipes that flow into the tank and a third pipe that flows out of the tank are opened. The first pipe has a solution of 2 pounds of sugar per gallon and flows into the tank at a rate of 6 gallons per minute. The second pipe has a solution of \( 1.25 \) pounds of sugar per gallon and flows into the tank at a rate of 5 gallons per minute. The tank is well-stirred. The mixture leaves the tank at a rate of 9 gallons per minute. Write an InitialValue Problem that models the amount of sugar in the tank (in pounds) at any time \( t \). You do not need to solve the problem.

MHR9VR The Asker · Calculus


Transcribed Image Text: A tank is used to mix sugar solutions for use in making candies at a factory. The tank initially holds 50 gallons of pure water. Two pipes that flow into the tank and a third pipe that flows out of the tank are opened. The first pipe has a solution of 2 pounds of sugar per gallon and flows into the tank at a rate of 6 gallons per minute. The second pipe has a solution of \( 1.25 \) pounds of sugar per gallon and flows into the tank at a rate of 5 gallons per minute. The tank is well-stirred. The mixture leaves the tank at a rate of 9 gallons per minute. Write an InitialValue Problem that models the amount of sugar in the tank (in pounds) at any time \( t \). You do not need to solve the problem.
More
Transcribed Image Text: A tank is used to mix sugar solutions for use in making candies at a factory. The tank initially holds 50 gallons of pure water. Two pipes that flow into the tank and a third pipe that flows out of the tank are opened. The first pipe has a solution of 2 pounds of sugar per gallon and flows into the tank at a rate of 6 gallons per minute. The second pipe has a solution of \( 1.25 \) pounds of sugar per gallon and flows into the tank at a rate of 5 gallons per minute. The tank is well-stirred. The mixture leaves the tank at a rate of 9 gallons per minute. Write an InitialValue Problem that models the amount of sugar in the tank (in pounds) at any time \( t \). You do not need to solve the problem.
See Answer
Add Answer +20 Points
Community Answer
XPDZPF
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Step1/3.gkwtCW{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/data-styled.g364[id="sc-z3f5s1-0"]{content:"gkwtCW,"}/*!sc*/.iIwMoS{white-space:pre-wrap;}/*!sc*/data-styled.g366[id="sc-1aslxm9-0"]{content:"iIwMoS,"}/*!sc*/.fzJtOB{text-align:start;}/*!sc*/data-styled.g368[id="sc-1aslxm9-2"]{content:"fzJtOB,"}/*!sc*/.ePoHy{line-height:1;font-size:80%;}/*!sc*/data-styled.g392[id="sc-1r1de4b-4"]{content:"ePoHy,"}/*!sc*/.hOZehF{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/data-styled.g395[id="sc-9wsboo-0"]{content:"hOZehF,"}/*!sc*/.evjWEY{padding:0 1.5px;}/*!sc*/data-styled.g396[id="sc-9wsboo-1"]{content:"evjWEY,"}/*!sc*/.lhIoTe{margin:0;font-size:1rem;}/*!sc*/data-styled.g397[id="sc-1swtczx-0"]{content:"lhIoTe,"}/*!sc*/.iHelzO{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/data-styled.g428[id="sc-1sugbjn-0"]{content:"iHelzO,"}/*!sc*/.kkKaFK{margin-top:14px;}/*!sc*/data-styled.g432[id="sc-1sugbjn-4"]{content:"kkKaFK,"}/*!sc*/.iQllJf{margin-top:14px;}/*!sc*/data-styled.g433[id="sc-1sugbjn-5"]{content:"iQllJf,"}/*!sc*/Let y(t) and v(t) be the amount of sugar (in pounds) and volume of water in the tank at any time t minutes respectively. Then, y(0) = 0 lb, v(0) = 50 galIn flow : cin1 = 2 lb / gal , rin1 = 6 gal/min , cin2 = 1.25 lb / gal , rin2 = 5 gal/minOut flow : co(t) = y(t)/v(t) lb / gal , ro = 9 gal/min Explanation:c and r represents the concentration and rate of entering/outgoing sugar solutions in the tank at any time t min respectively.Step2/3mjx-container[jax="CHTML"]{line-height: 0;}mjx-container [space="2"]{margin-left: .167em;}mjx-container [space="3"]{margin-left: .222em;}mjx-container [space="4"]{margin-left: .278em;}mjx-container [size="s"]{font-size: 70.7%;}mjx-row{display: table-row;}mjx-row > *{display: table-cell;}mjx-mtext{display: inline-block; text-align: left;}mjx-assistive-mml{position: absolute !important; top: 0px; left: 0px; clip: rect(1px, 1px, 1px, 1px); padding: 1px 0px 0px 0px !important; border: 0px !important; display: block !important; width: auto !important; overflow: hidden !important; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none;}mjx-math{display: inline-block; text-align: left; line-height: 0; text-indent: 0; font-style: normal; font-weight: normal; font-size: 100%; font-size-adjust: none; letter-spacing: normal; border-collapse: collapse; word-wrap: normal; word-spacing: normal; white-space: nowrap; direction: ltr; padding: 1px 0;}mjx-mfrac{display: inline-block; text-align: left;}mjx-frac{display: inline-block; vertical-align: 0.17em; padding: 0 .22em;}mjx-dtable{display: inline-table; width: 100%;}mjx-dtable > *{font-size: 2000%;}mjx-dbox{display: block; font-size: 5%;}mjx-num{display: block; text-align: center;}mjx-den{display: block; text-align: center;}mjx-nstrut{display: inline-block; height: .054em; width: 0; vertical-align: -.054em;}mjx-dstrut{display: inline-block; height: .505em; width: 0;}mjx-line{display: block; box-sizing: border-box; min-height: 1px; height: .06em; border-top: .06em solid; margin: .06em -.1em; overflow: hidden;}mjx-mi{display: inline-block; text-align: left;}mjx-c{display: inline-block;}mjx-mrow{display: inline-block; text-align: left;}mjx-mo{display: inline-block; text-align: left;}mjx-mn{display: inline-block; text-align: left;}mjx-c::before{display: block; width: 0;}.MJX-TEX{font-family: MJXZERO, MJXTEX;}.TEX-S1{font-family: MJXZERO, MJXTEX-S1;}@font-face{font-family: MJXZERO; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Zero.woff") format("woff");}@font-face{font-family: MJXTEX; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Main-Regular.woff") format("woff");}@font-face{font-family: MJXTEX-S1; src: url("https://cdn.jsdelivr.net/npm/mathjax@3/es5/output/chtml/fonts/woff-v2/MathJax_Size1-Regular.woff") format("woff");}mjx-c.mjx-c64::before{padding: 0.694em 0.556em 0.011em 0; content: "d";}mjx-c.mjx-c76::before{padding: 0.431em 0.528em 0.011em 0; content: "v";}mjx-c.mjx-c74::before{padding: 0.615em 0.389em 0.01em 0; content: "t";}mjx-c.mjx-c3D::before{padding: 0.583em 0.778em 0.082em 0; content: "=";}mjx-c.mjx-c28::before{padding: 0.75em 0.389em 0.25em 0; content: "(";}mjx-c.mjx-c36::before{padding: 0.666em 0.5em 0.022em 0; content: "6";}mjx-c.mjx-c2B::before{padding: 0.583em 0.778em 0.082em 0; content: "+";}mjx-c.mjx-c35::before{padding: 0.666em 0.5em 0.022em 0; content: "5";}mjx-c.mjx-c29::before{padding: 0.75em 0.389em 0.25em 0; content: ")";}mjx-c.mjx-c2212::before{padding: 0.583em 0.778em 0.082em 0; content: "\22 ... See the full answer