Air is flowing in a duct with velocity of 7.62 m/s and a static pressure of 2.16 cm water gage. The dud diameter is 1.22 m, the barometric pressure is 99.4 kPa and the gauge fluid temperature and air temperature are 30 °C. What is the total pressure of air against which the fan will operate?
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Ans.\begin{array}{l}V=7.62 \mathrm{~m} / \mathrm{s} . \\P_{1}=2.16 \mathrm{~cm} \text { water 2age. } \\D=1.22 \mathrm{~m} . \\P_{\text {baro }}=\text { atmospheric pressure }=99.4 \mathrm{kpq} . \\T_{1}=30^{\circ} \mathrm{C} .=30+273.15=303.15 \mathrm{k}\end{array}absolute siatic pressure.\begin{array}{l}P_{1 a b s}=P_{1}(g a 4 b e)+p_{b a r o} \\P_{1 a b s}=(e . g h)+99.4 \times 10^{3} \\P_{1 a b s}=1000 \times 9.81 \times\left(\frac{2.16}{100}\right)+99.4 \times 10^{3} \\P_{1 a b s}=211.896+99.4 \times 103 \\P_{1 a b s}=99611.896 \mathrm{~Pa}=99.611 \mathrm{kpq}\end{array}\begin{array}{l}\text { Velocity of sound }(C) \Rightarrow \\\qquad C=\sqrt{K R T_{1}}=\sqrt{1.4 \times 287 \times 303.15}\end{array}c=349 \mathrm{~m} / \mathrm{s} /Mach Number\begin{array}{l}M_{a}=\frac{V}{C} \\M_{a}=\frac{7.62}{349} \\M_{a}=0.021\end{array}Now total pressure \left(P_{0}\right)\begin{array}{l}\Rightarrow \frac{P_{0_{1}}}{P_{1 b_{s}}}=\left(1+\frac{k-1}{2}\left(M_{a}\right)^{2}\right)^{\frac{K-1}{k}} \\\Rightarrow \frac{P_{0_{1}}}{P_{1 a_{s}}}=\left(1+\frac{0.4}{2} \times(0.021)^{2}\right) \frac{1.4}{0.4} \\\Rightarrow P_{0_{1}}=1.003087 \times 99.611 \\\Rightarrow P_{0,}=99.64 \mathrm{kpq}\end{array}Ans. ...