An analyst must decide between two different forecasting techniques for weekly sales of roller blades: a linear trend equation and the naive approach. The linear trend equation is Ft = 124 + 2.1t, and it was developed using data from periods 1 through 10. Based on data for periods 11 through 20 as shown in the table, which of these two methods has the greater accuracy if MAD and MSE are used? (Round your answers to 2 decimal places.) t Units Sold 11 148 12 149 13 148 14 145 15 153 16 152 17 152 18 159 19 161 20 165 MAD (Naive) MAD (Linear) MSE (Naive) MSE (Linear)

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

MAD (Naive)MAD (Linear)MSE (Naive)MSE (Linear)4.44 \pm .052.44 \pm .0536.50 \pm .0517.78 \pm .05Linear trend provides forecasts with less average error and less average squared error. rev:11_21_2014_QC_59441Explanation:\begin{array}{cccccrcrrrr} & \text { Units } & & & & & & & & & \\ t & \text { Sold } & \text { Naive } & \mathrm{e} & |\mathrm{e}| & \mathrm{e}^{2} & \text { Trend } & \mathrm{e} & |\mathrm{e}| & \mathrm{e}^{2} \\ 11 & 147 & - & & & & 146.8 & .2 & .20 & .00 \\ 12 & 149 & 147 & 2 & 2 & 4 & 148.6 & .4 & .40 & .20 \\ 13 & 151 & 149 & 2 & 2 & 4 & 150.4 & .6 & .60 & .40 \\ 14 & 142 & 151 & -9 & 9 & 81 & 152.2 & -10.2 & 10.20 & 104.00 \\ 15 & 154 & 142 & 12 & 12 & 144 & 154.0 & .0 & .00 & .00 \\ 16 & 151 & 154 & -3 & 3 & 9 & 155.8 & -4.8 & 4.80 & 23.00 \\ 17 & 154 & 151 & 3 & 3 & 9 & 157.6 & -3.6 & 3.60 & 13.00 \\ 18 & 155 & 154 & 1 & 1 & 1 & 159.4 & -4.4 & 4.40 & 19.40 \\ 19 & 161 & 155 & 6 & 6 & 36 & 161.2 & -.2 & .2 & .00 \\ 20 & 163 & 161 & 2 & 2 & 4 & 163.0 & .0 & .00 & .00 \\ & & & & & & & & & & \\ & & & 16 & 40 & 292 & & -22.0 & 24.40 & 160.00\end{array}MAD: \quad \begin{array}{c}40 \\ 9\end{array}=4.44MAD: \quad \begin{array}{c}24.40 \\ 10\end{array}=2.44MSE: \quad \begin{array}{c}160.00 \\ 9\end{array}=17.78 ...