CLEAR work showing how to solve all 3 parts of this problem would be very appreciated and result in a thumbs up!
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
givi-- An Imented colindical conet 248 deep and 12 \mathrm{ft} cocors the torp.filled wth woth at a rate of 16 \mathrm{fp}^{3} / \mathrm{mes}\begin{array}{l}h=2: 4 y \\\gamma=12 y \\\left.\frac{d v}{d t} \Rightarrow 16 \mathrm{jp}^{3}\right|_{\mathrm{mn}}\end{array}wher V is volume\begin{array}{l}v \Rightarrow \frac{1}{3} \pi r^{2} h \\{\left[r \Rightarrow \frac{h}{2}\right)=\frac{16}{h}=\frac{12}{2 t}=\frac{1}{2}} \\v \Rightarrow \frac{1}{3} \pi\left(\frac{h}{2}\right)^{3} h \\v \Rightarrow \frac{1}{3}+\frac{1}{4} \pi \frac{h^{3}}{4} \\\frac{d v}{d t}=\frac{\pi}{12} \times 3 h^{2} \frac{d h}{d t} \\\frac{d v}{d t}=\frac{\pi}{4} h^{2} \times \frac{d h}{d t} \\\frac{d v}{d t} \Rightarrow \frac{\pi h^{2}}{4} \times \frac{d h}{d t}\end{array}16=\frac{\pi}{2} \times h^{2} \times \frac{d h}{d t}at h=1 ft\begin{array}{l}\frac{d h}{d t}=\frac{3 z^{8}}{\pi} \times \frac{1}{12^{2}} \\{\left[\frac{d h}{d t} \Rightarrow \frac{8}{32} \Rightarrow 0.848\right]}\end{array}at h=10 \mathrm{ft}\begin{aligned}\frac{d h}{d t} & =\frac{32}{\pi} \times \frac{1}{10^{2}} \\\frac{d h}{d t} & =0.101\end{aligned}at h=23 \mathrm{fs}\begin{array}{l}\frac{d h}{d t}=\frac{32}{\pi} \times \frac{1}{23^{2}} \\{\left[\frac{d h}{d t} \Rightarrow 0000.019 \quad 11\right]}\end{array} ...