CLEAR work showing how to solve all 3 parts of this problem would be very appreciated and result in a thumbs up!

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

givi-- An Imented colindical conet 248 deep and 12 \mathrm{ft} cocors the torp.filled wth woth at a rate of 16 \mathrm{fp}^{3} / \mathrm{mes}\begin{array}{l}h=2: 4 y \\\gamma=12 y \\\left.\frac{d v}{d t} \Rightarrow 16 \mathrm{jp}^{3}\right|_{\mathrm{mn}}\end{array}wher V is volume\begin{array}{l}v \Rightarrow \frac{1}{3} \pi r^{2} h \\{\left[r \Rightarrow \frac{h}{2}\right)=\frac{16}{h}=\frac{12}{2 t}=\frac{1}{2}} \\v \Rightarrow \frac{1}{3} \pi\left(\frac{h}{2}\right)^{3} h \\v \Rightarrow \frac{1}{3}+\frac{1}{4} \pi \frac{h^{3}}{4} \\\frac{d v}{d t}=\frac{\pi}{12} \times 3 h^{2} \frac{d h}{d t} \\\frac{d v}{d t}=\frac{\pi}{4} h^{2} \times \frac{d h}{d t} \\\frac{d v}{d t} \Rightarrow \frac{\pi h^{2}}{4} \times \frac{d h}{d t}\end{array}16=\frac{\pi}{2} \times h^{2} \times \frac{d h}{d t}at h=1 ft\begin{array}{l}\frac{d h}{d t}=\frac{3 z^{8}}{\pi} \times \frac{1}{12^{2}} \\{\left[\frac{d h}{d t} \Rightarrow \frac{8}{32} \Rightarrow 0.848\right]}\end{array}at h=10 \mathrm{ft}\begin{aligned}\frac{d h}{d t} & =\frac{32}{\pi} \times \frac{1}{10^{2}} \\\frac{d h}{d t} & =0.101\end{aligned}at h=23 \mathrm{fs}\begin{array}{l}\frac{d h}{d t}=\frac{32}{\pi} \times \frac{1}{23^{2}} \\{\left[\frac{d h}{d t} \Rightarrow 0000.019 \quad 11\right]}\end{array} ...