Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
(A) Applying Newton's second lawalong x-axis \Rightarrow F_{r}=m aalong y-axis \Rightarrow \quad N=m gAs we knowF_{r}=\mu N(1) [fr \rightarrow frictional force]Equating equation (D, (iI) and (III)\begin{array}{l}\mu m g=m a \\\Rightarrow a=f i g \\\end{array}whire g=9.81 \mathrm{~m} / \mathrm{s}^{2}(00) g=32 \mathrm{ft} / \mathrm{s}^{2}for minimum \mu,\mu=0.350, a_{1}=11.2 \mathrm{ft} / \mathrm{s}^{2} \quad\left[a_{1} \Rightarrow \text { minimum value }\right]For maximum \mu\begin{array}{l}\text { For maximum } \mu \\\qquad \mu=0.599, \quad a_{2}=19.168 \mathrm{ft} / \mathrm{s}^{2}\left[a_{2} \Rightarrow \text { maximumvalue }\right] \\v_{0}=55 \mathrm{mph} \times\left(\frac{5280 \mathrm{ft}}{1 \text { mile }}\right) \times\left(\frac{2 \mathrm{~h}}{3600 \mathrm{~s}}\right) \\v_{0}=80.667 \mathrm{ft} / \mathrm{s}^{2}\end{array}(1) Maximum braking distance \left(x_{1}\right)\begin{array}{l}x_{1}=\frac{v_{0}^{2}}{2} \times a_{1}=\frac{(80.667)^{2}}{2} \times: 11.2 \\x_{1}=290.5 \mathrm{ft}\end{array}(11) Minimum breaking distance \left(x_{2}\right)\begin{array}{l}x_{2}=\frac{v_{0}^{2}}{2} \times a_{2}=\frac{(80.667)^{2}}{2} \times 19.168 \\x_{2}=169.74 \mathrm{ft}\end{array}(B) Maximum desired speed limit ( v_{\text {max }} )V_{0}=\sqrt{2 \times a \times x}\left[a=11.2 \mathrm{ft} / \mathrm{s}^{2} \text { and } 19.1 .68 \mathrm{ft} / \mathrm{s}^{2}\right][x=155 f t]V_{0}=58.92 \mathrm{ft} / \mathrm{s} \text { and } 77.08 \mathrm{ft} / \mathrm{s}There fore maximum desired speed limitv_{\text {max }}=58.92 \mathrm{ft} / \mathrm{s} \text { which is with }minimum acceleration. ...