Sketch for both conditions.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:-a) GivenG(s)=\frac{k}{s(s+2)(s+1+j)(s+1-j)}The centre of asymptotes is\begin{array}{l}\sigma_{c}=-\frac{(0+2+1+j+1-j)}{4} \\\sigma_{c}=-1\end{array}For k>0, the angles of the asymptotes are\theta=45^{\circ}, 135^{\circ}, 225^{\circ} \& 135^{\circ}For k<0, the angles of the asymptotes are\theta=0^{\circ}, 90^{\circ}, 180^{\circ} \& 270^{\circ}SketchFor K \geq 0for \quad K<0b) Cniven charectesiscs equation\begin{array}{l} s(s+2)(s+3)+k=0 \\\Rightarrow \quad 1+\frac{k}{s(s+2)(s+3)}=0 \\\text { so centroid }=\frac{(0-2-3)-0}{3-0} \\=-1.67\end{array}So the asymptotes will cut x-axis at -1.67Thanks ...