Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:-Draw the free body diagram of rod A B\begin{array}{l}U_{A}=V_{B}+V_{A / B} \\V_{B}=1.6 \% 15 \quad 60^{\circ}<0^{\circ} \\{\left[V_{A \downarrow} \downarrow\right]=\left[1.6 \mathrm{~m} / \mathrm{s} \quad 830^{\circ}\right]} \\+\left[V_{A / B} \prod_{40^{\circ}}\right] \\\end{array}Law of sines\frac{V_{A}}{\sin 70^{\circ}}=\frac{V_{\theta 1 B}}{\sin 60^{\circ}}=\frac{1.6 \mathrm{r} / \mathrm{s}}{\sin 50^{\circ}}a)\begin{aligned}\frac{V_{A B B}}{\sin 60^{\circ}} & =\frac{1.6 \mathrm{m-s}}{\sin 50^{\circ}} \text { so } V_{A \mid B}=1.809 \mathrm{~ms}^{2}<, 00 \\A B & =0.5 \mathrm{~m} \\V_{A \mid B} & =(A B) W_{A B}\end{aligned}\begin{array}{l}1 . \text { fo } \mathrm{gm} / \mathrm{s}=(0.5 \mathrm{~m}) \omega_{A B} \\\left.\omega_{A B}=3.618 \mathrm{rdd} / \mathrm{s}\right)^{2}\end{array}b)\begin{array}{l}\frac{M_{A}}{\sin 70^{\circ}}=\frac{1.6 \mathrm{~m} / \mathrm{s}}{\sin 50^{\circ}} \\V_{A}=1.963-15 \mathrm{~V}\end{array}c)\begin{array}{l}\frac{Q_{A}}{\sin 70^{\circ}}=\frac{Q_{A \mid B}}{\sin 60^{\circ}}=\frac{5 \operatorname{sis}^{2}}{\sin 50^{\circ}} \\\frac{d_{A 1 B}}{\sin 60^{\circ}}=\frac{5 m s^{2}}{\sin 50^{\circ}} \\d_{A A_{B}}=5.65 \mathrm{mms}^{2} \\a_{A / B}=(A B) \alpha_{A / B} \\5.65=(0.5) \alpha_{\left.A\right|_{B}} \\\alpha_{A / B}=11.30 \mathrm{~m} / \mathrm{s}^{2} \\\end{array}d)\begin{array}{l}\frac{a_{A}}{\sin 70^{\circ}}=\frac{5 \mathrm{~m} / \mathrm{s}^{2}}{\sin 50^{\circ}} \\a_{A}=6.133 \mathrm{~m} / \mathrm{s}^{2}\end{array}Resuet,a) 3.618 \mathrm{rad} / 2 \mathrm{~m} b) 1.963 \mathrm{~m} / \mathrm{s} \downarrowc) 11.30 \mathrm{~m} / \mathrm{s}^{2} \mathrm{q} d) 6.133 \mathrm{~ms}^{2} d ...