Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
A_{3} A_{2} A_{1} A_{0}, B_{3} B_{2} B_{1} B_{0}Solution: from the circuit diagram (A=1010 ; B=1101)\begin{array}{l}A_{3}=A=1 \text { (bor } \Sigma_{3} \text { ) } \\B_{3}=1 \& \overline{a d d} / s_{u b}=1 \text { (always) Hence } \\\overline{B_{3} \oplus \text { add }} s_{u_{b}}=1\end{array}Now\begin{array}{l}A+B=1+1=0 \quad \frac{C \text { in }=1}{} \\\Sigma_{3}=0 \quad \text { Cout }=1\end{array}bor \varepsilon_{2} & cout2\begin{array}{l}A_{2}=0 ; \quad B_{2}=1 \quad \overline{\text { ada } / \text { sub }^{2}}=1 \\\overline{B_{2} \oplus \text { add } / \text { sub }}=1 \oplus 1=1 \\\text { Now } A_{2}+B_{2}=0+1=1 ; \text { cout }-2= \\1+\text { Coutz }_{2}=1+1=0 ; \text { cout } z=1\end{array}Hence \varepsilon_{2}=0 and Cout _{2}=1Now bos \Sigma_{1} and cout, Calculation :-A_{1}=1 ; B_{1}=0\overline{B_{1} \oplus \text { add } / s_{u_{b}}}=\overline{O \oplus 1}=0Now A_{1}+\overline{B_{1} \oplus \text { add } / \text { sub }}=1+0=11+\text { Cout }_{2}=1+1=0 ; \text { cout } 1=1Hence \Sigma_{1}=0 and C_{\text {out }}=1Now for \varepsilon_{0} and Cout -o\begin{array}{l}A_{0}=0 ; \quad B_{0}=1 \\\overline{B_{0} \oplus a d o / \mathrm{Sub}_{b}}=\overline{1 \oplus 1}=1 \\A_{0}+1=0+1=1 \\\Sigma_{0}=1 .\end{array}and Couto =1Hence output \varepsilon_{3} \Sigma_{2} \Sigma_{1} \varepsilon_{0}=000: 1\begin{array}{lllll}1 & 0 & 1 & 1 & 1 \\ \text { output }\end{array} of the sequence given circuit ...