Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
P. 1e(t)\begin{array}{l}e(t)=\frac{100}{v_{1}}+30 \cdot \overbrace{\sin \left(300 t+\frac{\pi}{6}\right)}^{v_{2}}+\overbrace{20 \sin 900 t}^{v}+\overbrace{15 \sin \left(1500 t-\frac{\pi}{6}\right)}^{v 4} \\+\underbrace{10 \sin 2100 t}_{r_{5}} \\\end{array}e(t) is consist of voltage sources having d e(w=0) and A C component. A C sources also has diffrent frequancyHence voltage at across to will be calculated using superposition theorem\begin{array}{l}z_{1}=\gamma+j \omega L=10+j \omega\left(50 \times 10^{-3}\right)=10+j 0.05 \omega \\\bar{R}_{2}=\frac{\pi R \times \frac{1}{j \omega c}}{R+\frac{1}{j \omega c}}=\frac{R}{1+j \omega R C}=\frac{100}{1+j \omega \times 100 \times 100 \times 10^{-6}} \\z_{2}=\frac{100}{1+j 0.01 \omega} \\\therefore V_{0}=\frac{z_{2}}{z_{1}+z_{2}} e(t) \\\end{array}Honnorke.05\begin{array}{l}V_{0}=\frac{100 / 1+j 0.01 \omega}{(10+j 0.05 \omega)+\frac{100}{1+j 0.01 \omega}} e(t) \\V_{0}=\frac{100}{\left(110-0.0005 \omega^{2}\right)+j 0.15 \omega} e(t)\end{array}(p-2)case: 1 When e_{1}=100 \mathrm{~V} is active \omega=0\begin{array}{l}V_{01}=\frac{100}{110-j 0} \times 100 \\V_{01}=90.91 \mathrm{~V}\end{array}Case -2 When enly e_{2}=30 \sin \left(300 t+\frac{\pi}{6}\right) is active w=300\begin{aligned}V_{02} & =\frac{100}{\left[110-0(0.0005)(300)^{2}\right]+j 0.15 \times(300)} \times 30 \sin \left(300+\frac{\pi}{6}\right) \\& =\frac{100}{65+j 45} \times 30 \sin \left(300 t+90^{\circ}\right) \\& =\frac{100}{79.057 / 34.7^{\circ}} \times 30 \sin (300 t+30) \cdot\left[x+3 y=\sqrt{x^{2}+y^{2}+6+\frac{1}{x}}\right) \\V_{02} & =9795\left(300 t-4.7^{\circ}\right) \quad\left[\frac{A L \theta_{1}}{\theta \angle \theta_{2}}=\frac{A}{\theta} \angle \theta_{1}-\theta_{2}\right]\end{aligned}Case -3 when only e_{3}=20 \sin 900 t is active (\omega=900)\begin{aligned}V_{03} & =\frac{100}{\left(110-0.0005 \times(900)^{2}+j 015 \times(900)\right.} \times 20 \sin 900 t \\& =\frac{100}{-295+J 135} \times 20 \sin 900 t \\& =\frac{100}{324 \angle 155.4^{\circ}} \times 20 \sin 900 t \\V_{03} & \left.=6.1734 \sin 900 t+1554^{\circ}\right)\end{aligned}P3Case -4, when only e_{4}=15 \sin \left(1500 t-\frac{\pi}{6}\right) is adtive \left(\begin{array}{c}\omega=1500 \\ \text { radlse }\end{array}\right.\begin{aligned}V_{04} & =\frac{100}{\left[110-0.0005(1500)^{2}+j 0.15(1500)\right.} \times 15 \sin \left(1500 t-3^{\circ}\right) \\& =\frac{100}{-1015+j 225} \times 15 \sin \left(1500 t-30^{\circ}\right) \\& =\frac{100}{1039.64 L-1675^{\circ}} \times 15 \sin \left(1500 t-30^{\circ}\right) \\V_{84} & =1.44 \sin \left(1500 t+137.5^{\circ}\right) \mathrm{V}\end{aligned}Case-5: When only e_{5}=10 \sin 200 \mathrm{t} is active (Here \omega=2100 rad/s )\begin{aligned}V_{05} & =\frac{100}{\left[110-0.0005(2100)^{2}\right]+j 0.15(2100)} \times 10 \sin 200 t \\& =\frac{100}{-2095+j 315} \times 10 \sin 2100 t \\& =\frac{100}{2118.55 L-179.85^{\circ}} \times 10 \sin 2100 \mathrm{t} \\V_{05} & =0.472 \sin \left(2100 t+179.85^{\circ}\right)\end{aligned}from superposition theoren, voltage across R\begin{array}{l}v_{0}=v_{01}+v_{02}+v_{03}+v_{04}+v_{05} \\v_{0}=90.91+37.95\left(300 t-47^{\circ}\right)+6.173 \sin \left(900 t+1554^{\circ}\right) \\\quad+1.44 \sin \left(1500 t+137.5^{\circ}\right)+0472 \sin \left(2100 t+179.5^{\circ}\right)\end{array}.               ***** PLEASE ud83dude4f PLEASE ud83dude4f UPVOTE ***** ...