Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution: Given that the curvesy=x^{2} \text { and } y=x^{3} \text {. }We know that to find the coordinates of the center of mass (\bar{x}, \bar{y}) of the sheet, we need to find the moment Mx of the sheet about the x-atis and the moment my about the y-axis. we also need to find the mass of the sheet.Ther\dot{x}=\frac{m_{y}}{m} \text { and } \bar{y}=\frac{m_{x}}{m} \text {. }whene\begin{array}{l}m=\iint_{R} \rho d A ; \rho \text { is the density } \\m_{x}=\iint_{R} y \rho d A \text { and } m_{y}=\iint_{R} x \rho d A\end{array}The region bounded by the wraves y=x^{2} and y=x^{3} has the points of intervals, whene\begin{aligned}& x^{2}=x^{3} \\\Rightarrow & x\left(x-x^{2}\right)=0 \\\Rightarrow & x^{2}(x-1)=0 \\\Rightarrow & x=0,1\end{aligned}So, the range of x is x : 0 to 1 the range of y is y : x^{3} to x^{2}Now\begin{aligned}m & =\iint_{R} \rho d A \\& =\rho \int_{x=0}^{1} \int_{y=x^{3}}^{x^{2}} d y d x \\& =\rho \int_{0}^{1}\left\{\int_{x^{3}}^{x^{2}} d y\right\} d x \\& \left.=\rho \int_{0}^{1}\{y]_{x^{3}}^{x^{2}}\right\} d x\end{aligned}\begin{aligned}& =\rho \int_{0}^{1}\left(x^{2}-x^{3}\right) d x . \\& =\rho\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1} \\& =\rho\left[\frac{1}{3}-\frac{1}{4}\right]=\frac{\rho}{12} \\\Rightarrow m & =\frac{\rho}{12}\end{aligned}Now,\begin{aligned}M_{x} & =\iint_{R} y \rho d A \\& =\rho \int_{0}^{1} \int_{x^{3}}^{x^{2}} y d y d x \\& =\rho \int_{0}^{1}\left\{\int_{x^{3}}^{x^{2}} y d y\right\} d x \\& =\rho \int_{0}^{1}\left\{\left[\frac{y^{2}}{2}\right]_{x^{3}}^{x^{2}}\right\} d x \\& =\rho \int_{0}^{1}\left(\frac{x^{4}}{2}-\frac{x^{6}}{2}\right) d x \\& =\frac{\rho}{2}\left\{\int_{0}^{1}\left(x^{4}-x^{6}\right) d x\right\} \\& =\frac{\rho}{2}\left[\frac{x^{5}}{5}-\frac{x^{7}}{7}\right]_{0}^{1} \\& =\frac{\rho}{2}\left(\frac{1}{5}-\frac{1}{7}\right) \\& =\frac{\rho}{2} \times \frac{2}{35} \\& =\frac{\rho}{35}\end{aligned}\Rightarrow m_{x}=\frac{\rho}{35}Now\text { Now } \begin{aligned}m_{y} & =\iint_{R} \rho x d \theta \\& =\rho \int_{x=0}^{1} \int_{y=x^{3}}^{x^{2}} x d y d x \\& =\rho \int_{0}^{1}\left\{\int_{x^{3}}^{x^{2}} x d y\right\} d x \\& =\rho \int_{0}^{1}\left\{x[y]_{x^{3}}^{x^{2}}\right\} d x \\& =\rho \int_{0}^{1} x\left(x^{2}-x^{3}\right) d x \\& =\rho \int_{0}^{1}\left(x^{3}-x^{4}\right) d x \\& =\rho\left[\frac{x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{1} \\& =\rho\left(\frac{1}{4}-\frac{1}{5}\right) \\& =\frac{\rho}{20} \\\Rightarrow m y & \frac{\rho}{20}\end{aligned}\therefore the x-coordinate of the centre of mass\text { is } \bar{x}=\frac{M y}{m}=\frac{\rho / 20}{\rho / 12}=\frac{3}{5}\therefore the y-coordinate of the center of m ass\text { is } \bar{y}=\frac{M_{x}}{m}=\frac{\rho / 35}{s / 12}=\frac{12}{35}Hence the coordinate of the center of mass is given by(\bar{x}, \bar{y})=\left(\frac{3}{5}, \frac{12}{35}\right) \text { (Ans) } ...