Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution; \begin{array}{l}\text { Diometer of ball bearings }=0.1 \mathrm{~m} \\\text { Radius }=0.1 / 2=0.05 \mathrm{~m} \\B_{i} \text { (Biot number) }=\frac{h L_{c}}{k}=\frac{h r_{0}}{3 k} \\=\frac{100 \mathrm{w} / \mathrm{m}^{2} \times 0.0 \mathrm{~s}}{3 \times 73 \mathrm{w} / \mathrm{mk}}=0.023 \\\text { Bi }<0.1 \\\end{array}therefore, No thermal energy generation within ppere.from, the coefficient used in one term approximation to series solution for tronsient one dimenpional conduction.The coefficient of bist number if 2 then,c_{1}=1.4793 \text { and } \rho_{1}=2.0288 \text {. }Using equation.\begin{array}{l}\frac{Q}{Q_{\max }}=1-3 Q_{\text {opphere }} \frac{\sin \rho_{1}-\rho_{1} \cos \rho_{1}}{\rho_{1}^{3}} \\\therefore Q_{0} \text { phere }=\left(1-\frac{Q}{Q_{\text {max }}}\right)\left(\frac{\rho_{1}^{3}}{3\left(\sin \rho_{1}-\rho_{1} \cos \rho_{1}\right)}\right) \\=(1-0.7)\left(\frac{2.0288^{3}}{3(\sin (2.0833)-2.083 \cos 2.083))}\right. \\=0.465 \\\text { fourier number }\left(F_{0}\right)=\frac{1}{\rho_{1}^{2}} \ln \left(\frac{Q_{0}}{c_{1}}\right) \\=\frac{1}{(2.0288)^{2}} \ln \left(\frac{0.465}{1.4793}\right) \\=0.281 \\\end{array}\begin{aligned} \text { Repidence fime } & =\frac{f_{0} r_{0}{ }^{2}}{d} \\ & =\frac{0.281 \times(0.05)^{2}}{2 \times 10^{-5}} \\ & =35.125 \mathrm{sec} \\ \text { Drive velocity } & =\frac{L}{t}=\frac{50 \mathrm{~m}}{35.125 \mathrm{~m}}=1.423 \mathrm{~m} / \mathrm{see}\end{aligned} ...