Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Solution; \begin{array}{l}\text { Diometer of ball bearings }=0.1 \mathrm{~m} \\\text { Radius }=0.1 / 2=0.05 \mathrm{~m} \\B_{i} \text { (Biot number) }=\frac{h L_{c}}{k}=\frac{h r_{0}}{3 k} \\=\frac{100 \mathrm{w} / \mathrm{m}^{2} \times 0.0 \mathrm{~s}}{3 \times 73 \mathrm{w} / \mathrm{mk}}=0.023 \\\text { Bi }<0.1 \\\end{array}therefore, No thermal energy generation within ppere.from, the coefficient used in one term approximation to series solution for tronsient one dimenpional conduction.The coefficient of bist number if 2 then,c_{1}=1.4793 \text { and } \rho_{1}=2.0288 \text {. }Using equation.\begin{array}{l}\frac{Q}{Q_{\max }}=1-3 Q_{\text {opphere }} \frac{\sin \rho_{1}-\rho_{1} \cos \rho_{1}}{\rho_{1}^{3}} \\\therefore Q_{0} \text { phere }=\left(1-\frac{Q}{Q_{\text {max }}}\right)\left(\frac{\rho_{1}^{3}}{3\left(\sin \rho_{1}-\rho_{1} \cos \rho_{1}\right)}\right) \\=(1-0.7)\left(\frac{2.0288^{3}}{3(\sin (2.0833)-2.083 \cos 2.083))}\right. \\=0.465 \\\text { fourier number }\left(F_{0}\right)=\frac{1}{\rho_{1}^{2}} \ln \left(\frac{Q_{0}}{c_{1}}\right) \\=\frac{1}{(2.0288)^{2}} \ln \left(\frac{0.465}{1.4793}\right) \\=0.281 \\\end{array}\begin{aligned} \text { Repidence fime } & =\frac{f_{0} r_{0}{ }^{2}}{d} \\ & =\frac{0.281 \times(0.05)^{2}}{2 \times 10^{-5}} \\ & =35.125 \mathrm{sec} \\ \text { Drive velocity } & =\frac{L}{t}=\frac{50 \mathrm{~m}}{35.125 \mathrm{~m}}=1.423 \mathrm{~m} / \mathrm{see}\end{aligned} ...