Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given, G(s) H(s)=\frac{K\left(s^{2}+2 s+2\right)}{S\left(s^{2}+4\right)}= Open loop transfer function,Openloop poles are:\begin{array}{l}S\left(s^{2}+4\right)=0 \Rightarrow s=0 \text { and } s^{2}+4=0 \\\Rightarrow s^{2}=-4 \Rightarrow s= \pm \sqrt{-4} \\\therefore \text { Poles are } s=0,2 j,-2 j\end{array}Open loop zeroes:\begin{array}{ll}s^{2}+2 s+2=0 \Rightarrow s^{2}+2 s+1+1=0 \Rightarrow & (s+1)^{2}+1=0 \\& (s+1)^{2}=-1 \Rightarrow s+1= \pm \sqrt{-1} \\& s+1= \pm j \\\therefore \text { zeroes are } s=-1+j,-1-j & s=-1 \pm j\end{array}\therefore zeroes are s=-1+j,-1-jPlot of poles and zeroes:Angle of Departure: \left(\phi_{d}\right)A root locus branch starts at complex pole with an angle \phi_{d}.\left.\phi_{d}=180+\phi \quad \text { where } \phi=-\sum_{1} \text { (angle made by poles }\right)+\sum_{1} \text { angle made by } \text { zeroes }\phi=-\sum_{1} \phi_{p}+\sum_{1} \phi_{z}There are two complex poles:For s=+2 j\begin{aligned}\sum_{1} \phi_{p}=\theta_{1}+\theta_{2} & =90+90=180^{\circ} \\\sum_{1} \phi_{z}=\theta_{3}+\theta_{4} & =\tan ^{-1}\left(\frac{3}{1}\right)+\tan ^{-1}\left(\frac{1}{1}\right) \\\sum_{1} \phi_{z} & =71.565+45^{\circ} \\\sum_{1} \phi_{z} & =116.565^{\circ}\end{aligned}\begin{aligned}\phi=-\sum \phi_{p}+\sum_{1} \phi_{z} & =-180+116.525 \\\phi & =-63.435\end{aligned}\begin{array}{c}\phi_{d}=180+\phi=180-63.435 \\\phi_{d}=116.565^{\circ}\end{array}For s=-2 j\phi_{d}=-116.565^{\circ}[\because Angle of departure of a complex conjugate pole is \left.-\left(\phi_{d}\right)\right)Angle of Arrival \left(\phi_{a}\right) :A root locus ends at complex zero with an angle \phi_{a}.\phi_{a}=180-\phiThere are two complex zeroesFor s=-1+j :\begin{array}{c}\sum_{1} \phi_{p}=\theta_{1}+\theta_{2}+\theta_{3} \\\sum_{p}=\left(90+\tan ^{-1}\left(\frac{1}{3}\right)\right)+\left(90+\tan ^{-1}\left(y_{1}\right)\right. \\-\left[90+\tan ^{-1}\left(\phi_{1}\right)\right] \\\phi=-\sum_{1} \phi_{p}+\sum_{1} \phi_{z}=-g 6-\tan ^{-1}\left(\frac{1}{3}\right)+g 6 \\\phi_{a}=180-\phi_{a}=\theta_{4}=90^{\circ} \\=180-\left(-\tan ^{-1}(1 / 3)\right)=180+\tan ^{-1}(1 / 3)=180+18.435 \\\phi_{a}=198.435^{\circ}\end{array}Qa for its complex conjugate s=-1-j is -198.435^{\circ} ...