Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
The balance on tanks (1 & 2) induding linear rexutance wiol give:\begin{array}{l}\text { at skady stater } \left.\begin{array}{rl}\left(q-q_{12}\right) & =\left(A_{1}\right)(0)=0 \\\& & \left(q-q_{2 s}\right)=0\end{array}\right\} \\\end{array}scolving all equations givatTank-ti \left(Q-Q_{1}\right)=\left(A_{1}\right)\left(d H_{1} / d t\right)-1valve-t?value-2, \quad Q_{2}=\left(\mathrm{H}_{2} \mid \mathrm{R}_{2}\right)Taking Laplace tranforms of (1) (2), (3) & (4) give:We have doriveds\frac{H_{2}(l)}{Q(e)}=\left[\left(T_{1} T_{2}\right) x^{2}+\left(T_{1}+T_{2}+A_{1} R_{2}\right) s+1\right]where, \left(\tau_{1}=A_{1} R_{1}\right) ;\left(\tau_{2}=A_{2} R_{2}\right)given,\begin{array}{l}A_{1}=1 \mathrm{~m}^{2} ; \quad A_{2}=0.5 \mathrm{~m}^{2} ; \quad R_{1}=0.5 \mathrm{hm}^{-2} ; \quad R_{2}=2 \mathrm{hm}^{-2} \\T_{1}=A_{1} R_{1}=(1 \times 0.5)=0.5 \mathrm{~h} \\T_{2}=A_{2} R_{2}=(0.5 \times 2)=\underline{1.0 h} \\\Leftrightarrow\left[\frac{\overline{H_{2}(s)}}{\bar{Q}(s)}=\frac{(2)}{\left[(0.5) s^{2}+(3.5) s+1\right]}\right. \\\end{array}Transfer function\overline{Q(8)} ...