Create a bucket by rotating around the y axis the curve y=3ln(x−6) from y = 0 to y = 4. If this bucket contains a liquid with density 780 kg/m3 filled to a height of 3 meters, find the work required to pump the liquid out of this bucket (over the top edge). Use 9.8 m/s2 for gravity.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
A bucket formed by rotating aroune the y-akis\begin{array}{l}y=3 \text { en }(x-6) \quad \text { from } y=0 \text { to } y=4 \\\rho=780 \mathrm{~kg} / \mathrm{m}^{3} \quad y=9.8 \mathrm{~m} / \mathrm{sec} . \\\text { height }=3 \mathrm{~m} . \\y=0 \text { when } x=7, x=6+e^{4 / 3} \Rightarrow x=6+e^{y / 3}\end{array}work wr fol =m g \times dws \int \rho d g d\begin{array}{l}w=\int_{0}^{3} \rho \pi\left(6+e^{y / 3}\right)^{2} d y \cdot g \cdot(4-y) \\w=\rho g \pi \int_{0}^{3}\left(36+e^{2 y / 3}+12 e^{y / 3}\right)(4-y) d y \\=99 \pi\left[\int_{0}^{3} 144 d y-\int_{0}^{3} 36 y d y+\int_{0}^{3} 4 e^{2 y / 3} d y\right. \\\begin{array}{c}-\int_{0}^{3} y e^{2 y / 3} d y+48 \int_{0}^{3 y / 3} e^{y / 3} d y-1 / x+x \\\left.-\int_{0}^{3} 2 y e^{y / 3} d y\right]\end{array} \\=99 \pi\left[432-162+6\left(e^{2}-1\right)-\left(\frac{6 y-9}{4} \cdot e^{\frac{2 y}{3}}\right)_{0}^{3}+144(e-1)\right. \\-108] \\\end{array}so\begin{aligned}w & =99 \pi\left[162+6 e^{2}-6+144 e-144-\frac{9 e^{2}}{4}-\frac{9}{4}\right] \\& =780 \times 9.8 \times \pi\left[12-\frac{9}{4}+6 e^{2}+144 e-\frac{9 e^{2}}{4}\right] \\& =10299544 \cdot 9 \text { Jovle. }\end{aligned}sir I rounded to one decimal. If any mistake plz comment  ...