Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
The tension fore in a rape increases exponentially with no. of turns.Tension of the two ends of the ropeT_{2}=T_{1} e^{\mu \theta}This equation is Euler-Eyteloein equationIt the man is on verge ofslipping, F=\mu_{s}^{\prime} \mathrm{N}=0.4 \mathrm{~N}\begin{array}{l} \pm \sum F_{x}=0 ; 0.4 N-T \sin 15^{\circ}=0 \\+\uparrow F_{y}=0 ; N+T \cos 15^{\circ}-80(9.81)=0\end{array}Solving\begin{array}{l}T=486.55 \mathrm{~N} \\\beta \rightarrow \text { This is } \beta \\N=314.82 \mathrm{~N} \\\stackrel{N}{15 N} \rightarrow=0.4 \mathrm{~N} \\\mathrm{~N} \quad T_{2}=300(9.81) \mathrm{N} \\T_{1}=T=486.55 \mathrm{~N} \\\beta=n(2 \pi)+\left[\left(\frac{90^{\circ}+75^{\circ}}{180^{\circ}}\right) \pi\right]=(2 n+0.9167) \pi \\T_{2}=T_{1} e^{\mu \beta} \\300 \times 9.81=486.55 e^{(2 n+0.9167) \pi} \\\ln 6.049=0.1(2 n+0.9167) \pi \\n=2.406 \\\end{array}But Here n>3, so man can hold itCS Scanned with CamScanner ...