Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given, f=60 \mathrm{~Hz}At No lond the motor will rua close to synchronous speed.i)\begin{array}{c}\text { Syachinuous specel } \cong 700+\alpha \quad\left[\begin{array}{c}\text { iet's take } \\\alpha=5\end{array}\right] \\N_{s} \cong 705 \\N_{s}=\frac{1.20 \mathrm{f}}{p} \Rightarrow p=\frac{120 \mathrm{f}}{\mathrm{Ns}_{s}} \\N_{0} \text { of Poles }(p)=\frac{120 \times 60}{705}=10.21\end{array}since the number of poles shenld be an integer lets take P=10ii)\begin{array}{l}\text { specd of Full Lond [Rated Speed] } \mathrm{N}_{2}=700-3 \alpha \\=685 \mathrm{rpm} \\S_{\text {ful }}[\text { slip efillgade }]=\frac{N_{s}-N_{2}}{N_{s}}=\frac{705-685}{705} \\S_{\text {fuy }}=0.0283 \\\end{array}jii) Since the load is poopetional to slip Slip@One qwerter of full load =\frac{5 \text { full }}{4}Specd (a that ship\begin{array}{c}s^{\prime}=\frac{N_{s}-N_{\gamma}^{\prime}}{N_{s}} \Rightarrow s^{\prime}=1-\frac{N_{\gamma}^{\prime}}{N_{s}} \\N_{\gamma}^{\prime}=N_{s}\left(1-s^{\prime}\right)=705\left(1-\frac{0.0283}{4}\right) \\N_{\gamma}^{\prime}=700 \text { spM }\end{array}iv) Rotors electrical Erequency.\begin{aligned}\text { Rotor Frequency } & =\text { Slip } \times \text { Supply Frequeny } \\& =S^{\prime} \times \mathrm{F} \\& =\frac{0.0283}{4} \times 60 \\& =0.4245 \mathrm{~Hz}\end{aligned} ...