Part H(dq(t))/(q(t)-C epsi)=-(dt)/(RC)Integrating both sides int_(0)^(q)(dq(t))/(q(t)-C epsi)=-int_(0)(dt)/(RC) ln((q(t)-c epsi)/(-C epsi))=-(t)/(RC) (q(t)-c epsi)/(-C epsi)=e^(-t∣RC) q(t)-c epsi=-C epsie^(-t//RC){:[q(t)=-C epsie^(-t//RC)+c epsi=c epsi(-e^(-t//RC)+1)],[" or " ... See the full answer