Question Describe clearly your approach to estimating the parameters for a single equation model based on the data presented in the graph. Describe clearly your approach to estimating the parameters for a single equation model based on the data presented in the graph. Canadian Exports by Year by Country 101000 100 800 100600 Exports ($ thousands) 100400 100 200 100000 99800 1995 2000 2005 2010 2015 2020 Year • USA • China

7CL51F The Asker · Economics

Describe clearly your approach to estimating the parameters for a single equation model based on the data presented in the graph.

Transcribed Image Text: Describe clearly your approach to estimating the parameters for a single equation model based on the data presented in the graph. Canadian Exports by Year by Country 101000 100 800 100600 Exports ($ thousands) 100400 100 200 100000 99800 1995 2000 2005 2010 2015 2020 Year • USA • China
More
Transcribed Image Text: Describe clearly your approach to estimating the parameters for a single equation model based on the data presented in the graph. Canadian Exports by Year by Country 101000 100 800 100600 Exports ($ thousands) 100400 100 200 100000 99800 1995 2000 2005 2010 2015 2020 Year • USA • China
Community Answer
FAERR6

General GuidanceThe answer provided below has been developed in a clear step by step manner.Step: 1.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listLTR{margin-left:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listRTL{margin-right:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listLTR{margin-left:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listRTL{margin-right:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listLTR{margin-left:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listRTL{margin-right:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listLTR{margin-left:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listRTL{margin-right:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listLTR{margin-left:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listRTL{margin-right:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem{list-style-type:square;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth0{list-style-type:disc;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth1{list-style-type:circle;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem{list-style-type:none;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listLTR:before{left:-36px;position:absolute;text-align:right;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listRTL:before{position:absolute;right:-36px;text-align:left;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem:before{content:counter(ol0) '. ';counter-increment:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth1:before{content:counter(ol1,lower-alpha) '. ';counter-increment:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth2:before{content:counter(ol2,lower-roman) '. ';counter-increment:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth3:before{content:counter(ol3) '. ';counter-increment:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth4:before{content:counter(ol4,lower-alpha) '. ';counter-increment:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-reset{counter-reset:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-reset{counter-reset:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-reset{counter-reset:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-reset{counter-reset:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-reset{counter-reset:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{text-align:inherit;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{text-align:inherit;}/*!sc*/ data-styled.g370[id="sc-mwpquf-4"]{content:"cpESDm,"}/*!sc*/ .jhimFq{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;box-sizing:border-box;border:2px solid transparent;}/*!sc*/ .jhimFq h2{font-size:16px;}/*!sc*/ .jhimFq h3{font-size:14px;}/*!sc*/ data-styled.g384[id="sc-mo29cs-0"]{content:"jhimFq,"}/*!sc*/ .iQAUeM{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ data-styled.g605[id="sc-z3f5s1-0"]{content:"iQAUeM,"}/*!sc*/ .bVFlsN{margin:0;}/*!sc*/ data-styled.g610[id="sc-1swtczx-0"]{content:"bVFlsN,"}/*!sc*/ .gpAhdE{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/ data-styled.g626[id="sc-1sugbjn-0"]{content:"gpAhdE,"}/*!sc*/ Here note that scatterplot shows the significant correlation between the variables undergrad and log wages, high school and log wages. Note that blue dots in the plot represent the values of Undergrad students and which are strong positively correlated with Log Wages variable. Also if we see yellow dots, the High-school variable is also positively correlated with Log Wages. Means Log Wages is dependent on both variables Undergrad and Highschool. Here we can use linear regression model in which Log Wages is the response variable or dependent variable and Undergrad and Highschool are the independent variables. We can write the regression model is as follows: text{Log Wages} = beta_0+beta_1 ~ text{Undergrad}~+~beta_2~text{High School}~+~epsilon Using the least square method we can estimate the parameters of this regression equation. And we ... See the full answer