Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Ques: Gnsider the following Initial Value problem\frac{d y}{d x}=5 y+x \quad, y(0)=1Whe Euler's methoo to costimate the selution y(x) on the inferval [0,1] werth 5 stop.8 f^{n}=-\quad Given \quad \frac{d y}{d x}=5 y+x\begin{array}{l}y(0)=1 \\x=0 \Rightarrow y=1\end{array}\frac{d y}{d x}-5 y=xwe knoro that\frac{d y}{d x}+\mu y=\thetawher p, and \theta function of x and antontp=-5, \theta=xNow Intecgeting facter (I.F)\begin{aligned}I \cdot F & =e^{\int p d x} \\& =e^{\int-5 d x}=e^{-5 \int d x}=e^{-5 x} \\I \cdot F & =e^{-5 x}\end{aligned}Now Gereval sel"y(I, F)=\int \theta(I \cdot F) d xput vake of I.F and \thetaSoy\left(e^{-5 x}\right) \doteq \int \frac{x \cdot e^{-5 x}}{I} \cdot d xwe know thatAlgebra furction Nuenter I and expenitial function Nambor III\int I \cdot I d x=I \int \pi d x-\int\left(\frac{d}{d x}(I) \int d x\right) d xNow y\left(e^{-5 x}\right)=x \int e^{-5 x} d x-\left(\frac{d x}{d x}(x) \int e^{-5 x} d x\right) d xWe know that\begin{array}{l}\int e^{a x} d x=\frac{1}{a} e^{a x}+c \quad, \frac{d}{d x}(x)=1 \\\Rightarrow y\left(e^{-5 x}\right)=\frac{x e^{-5 x}}{-5}-\int \cdot \frac{e^{-5 x}}{-5} d x+c \\\Rightarrow y\left(e^{-5 x}\right)=-\frac{1 x}{5} e^{-5 x}+\frac{1}{5}\left(\frac{e^{-5 x}}{5}\right)+c \\\Rightarrow y\left(e^{-5 x}\right)=-\frac{1 x}{5} e^{-5 x}+\left(\frac{-1}{25}\right) e^{-5 x}+c \\\Rightarrow y e^{-5 x}=e^{-5 x}\left(-\frac{1 x}{5}-\frac{1}{25}\right)+c \\\Rightarrow \quad y=\frac{-x}{5}+\frac{1}{25}+c \\\end{array}Now given y(0)=1x=0 \Rightarrow y=1put values in ogn (2)\begin{array}{l}1=\frac{-0}{5}+\left(\frac{-1}{25}\right)+c \\c=1+\frac{1}{25}=\frac{26}{25} \\c=\frac{26}{25}\end{array}Hence\begin{array}{l}y=-\frac{x}{5}-\frac{1}{25}+\frac{26}{25} \\y=-\frac{x}{5}+\frac{25}{25} \\y=-\frac{x}{5}+1 \\y(x)=-\frac{x}{5}+1\end{array} ...