Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Step1/3Part (i)We have \(w=4y^6-5y\)at \(y=1, \) the error in y \((Deltay)=0.04\)The percentage error in w \((Deltaw)=(dw)/(dy)|_(y=1)(Deltay)\)\((dw)/(dy)=d/dy(4y^6-5y)=24y^5-5\)at y = 1,\((dw)/(dy)=24(1)^5-5=19\)\(impliesDeltaw=19(0.04)=0.76\)at y = 1,\(w=4(1)^6-5(1)=-1\)The percentage error \(=(Deltaw)/w*100%\) \(=(0.76)/-1*100%=76%\)Explanation:calculation of percentage error.Step2/3Part (ii)We have \(Z=4cosw-6w\)at \(w=0,\) the error in w \((Deltaw)=0.005\)The percentage error in Z \((DeltaZ)=(dZ)/(dy)|_(w=1)(Deltaw)\)\((dZ)/(dw)=d/(dw)(4cosw-6w)=-4sinw-6\)at w = 0,\((dZ)/(dw)=-4sin0-6=-6\) {sin(0)=0}\(impliesDeltaZ=-6(0.005)=-0.03\)at w = 0,\(Z=4cos0-6(0)=4\) {cos(0)=1}The percentage error \(=(DeltaZ)/Z*100%\) \(=(-0.03)/4*100%\) \(=0.75%\)Step3/3Part (iii)\(Y=e^(x^2)+3x^2+4x\)at \(x=2,\) the error in x \((Deltax)=0.002\)The error in Y \((DeltaY)=(dY)/(dx)|_(x=2)(Deltax)\)\((dY)/(dx)=d/dx(e^(x^2)+3x^2+4x)=e^(x^2)(2x)+6x+4\)at x = 2,\((dY)/dx=(2*2)e^(2^2)+6(2)+4=234.3926\)\(impliesDeltaY=234.3926(0.002)=0.468752\)at x=1,\(Y=e^(2^2)+3(2^2)+4(2)=74.59815\)The percentage error \(=(DeltaY)/Y*100%\) \(=0.468752/74.598151*100%=0.628%\)Final Answer:Part (i)The percentage error = 76%Part (ii)The percentage error = 0.75%Part (iii)The percentage error = 0.628% ...