Please answer the three questions. Thank you!
General GuidanceThe answer provided below has been developed in a clear step by step manner.Step: 1AC=(4x-5)quad AD=(9-3x)quad AE=(6x+3).As we knokl, :.AE=6(2)+3AC=AD [From the =15=>4x-5=9-3x peoperty of=>{:[7x=14],[x=2]:} kite].Q.)As wee knokl,/_KNL=90^(@) [from the property of In /_\KNL, kite ].:./_KLN=x^(@)=180^(@)-(90^(@)+78^(@)){::./_KJN=/_NJM=41^(@)" [ From the property of ":}In /_\ JNM, kite J.{:[/_IMN=y^(@){:=180^(@)-" (LNIN "+/_MNJ)],[=180^(@)-(41^(@)+90^(@))],[=49^(@)]:}please go theough all the property of kite as mentionedP 12 like it.Explanation:properties:A kite has two pairs of adjacent equal sides. Here, AC = BC and AD = BD.It has one pair of opposite angles (obtuse) that are equal. Here, u2220A = u2220BIn the diagonal AB, AO = OB.The shorter diagonal forms two isosceles triangles. Here, diagonal 'AB' forms two isosceles triangles: u2206ACB and u2206ADB. The sides AC and BC are equal and AD and BD are equal which form the two isosceles triangles.The longer diagonal forms two congruent triangles. Here, diagonal 'CD' forms two congruent triangles - u2206CAD and u2206CBD by SSS criteria. This is because the lengths of three sides of u2206CAD are equal to the lengths of three sides of u2206CBD.The diagonals are perpendicular to each other. Here, AB u22a5 CD.The longer diagonal bisects the shorter diagonal.The longer diagonal bisects the pair of opposite angles. Here, u2220ACD = u2220DCB, and u2220ADC = u2220CDBThe area of a kite is half the product of its diagonals. (Area = 1/2 u00d7 diagonal 1 u00d7 diagonal 2).The perimeter of a kite is equal to the sum of the length of all of its sides.The sum of the interior angles of a kite is equal to 360u00b0.Answer:.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftSt ... See the full answer