Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
B_{e}= equivalent foundation diameter =\sqrt{\frac{4 B L}{\pi}}=\sqrt{\frac{4 \times 3 \times 2}{7}}=2.764 \mathrm{~m}\begin{array}{l}9 .=125 \mathrm{kr} / \mathrm{m}^{2} \\H=3 m \\S_{e}=\frac{9_{0} B_{e} I_{a} I_{F} \cdot I_{E}}{E}\left(1-\mu^{2}\right) \\E_{f}=25 \times 10^{3} \mathrm{mN} / \mathrm{m}^{2} \\E_{0}=12 \mathrm{mN} / \mathrm{m}^{2}, K=400 \mathrm{kN} / \mathrm{m}^{2} / \mathrm{m}, \mu=\overline{0} .2 \\\end{array}Calculation of InFrom graph of In vs \betaFor, \frac{H}{B_{e}}=\frac{3}{2.764}=1.08\beta=\frac{E_{0}}{K B_{e}} \Rightarrow \beta=\left(\frac{12 \times 10^{3} \mathrm{kN1/ \textrm {m } ^ { 2 }}}{400 \times 2.769} \Rightarrow \beta=10.854\right.\begin{array}{l}I_{n}=f\left(\frac{H}{B_{e}}, \beta\right)^{=1} \\I_{n}=f(1.0,10.854) \\I_{n}=0.6\end{array}\begin{array}{l}I_{F}=\frac{\pi}{4}-\frac{1}{4.6+10\left[\frac{E_{f}}{E_{\sigma}+\frac{B_{e}}{2} k}\right]\left[\frac{2 t}{B_{e}}\right]^{3}} \\t=0.25 \mathrm{~m} \\I_{F}=\frac{n}{4}-\frac{1}{4.6+10\left[\frac{25 \times 10^{3} 1}{12+\frac{2.769}{2} \times 0.4}\right]\left[\frac{2 \times 0.25}{2.769}\right]^{3}} \\I_{F}=0.777 \\\end{array}\begin{array}{l}I_{E}=1-\frac{1}{3.5 \times \exp (1.22 \times 0.2-0.4) \times\left(\frac{B_{e}}{D_{f}}+1.6\right)} \\I_{E}=1-\frac{1}{3.5 \times \exp (1.22 \times 0.2-0.4)\left(\frac{2.764}{1}+1.6\right)}=0.9235 \\S_{e}=\frac{125 \times 2.764 \times 0.6 \times 0.777 \times 0.9235 \times\left(1-0.2^{2}\right)}{12 \times 10^{3} \mathrm{kN1/ \textrm {m } ^ { 2 }}} \\S_{e}=0.0119 \mathrm{~m}=11.9 \mathrm{~mm}\end{array}elastic settlement is instantaneous. Influence factors are calculated using empirical relationship.   ...