Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Split the given into three Integral along i, j, k components. Use standard Integral formulae formula for first one, Integration by parts for second one and substitution method for last Integral, Sum up all three for given Integral. {:[int_(0)^(pi//4)(sec t tan t( hat(i))+t cos 2t( hat(j))+sin^(2)2t cos 2t( hat(k)))dt],[={int_(0)^(pi//4)sec t tan tdt} hat(i)+{int_(0)^(pi//4)t cos tdt} hat(j)+],[{int_(0)^(pi//4)sin^(2)2t cos 2t+( hat(}))( hat(k)):}]:}First Integral:{:[int_(0)^(pi//4)sec t tan tdt={sec^(')t}_(0)^(pi//4)],[=sec (pi)/(4)-sec 0=sqrt2-1]:}Second Integral:{:[=(pi)/(8)*sin (pi)/(2)-0-{-(cos 2t)/(4)}_(0)^(pi//4)],[=(pi)/(8)*1-{0+(1)/(4)}=(pi)/(8)-(1)/(4)],[=(pi-2)/(8)]:}Third Integral:{:[" Third Integral: "],[int_(0)^(pi//4)sin^(2)2t cos 2tdt=(1)/(2)*int_(0)^(pi//4)sin^(2)2td(sin 2t)],[=(1)/(2){(sin^(3)2t)/(3)}_(0)^(pi//4)=(1)/(6)[1-0]=(1)/(6)],[:." Solution "=(sqrt2-1) hat(i)+((pi-2)/(8)) hat(j)+(1)/(6) hat(k)]:} ...