Question Example 5 The cumulative distribution function of a continuous random variable X is: 0 for < -2 0.25 +0.5 for – 2 <r<1 F() = 0.5.0 +0.25 for 1 <r<1.5 1 for 1.5 <3 (a) What is the p.d.f. of X? (b) Determine P(X > 1.2) using F(). (c) Determine P(0 < X < 1.25) using F(x). (d) Determine P(0 < X < 1.25) using f(x). (e) Construct F(x) from your answer in (a).

BEUJZT The Asker · Probability and Statistics

Transcribed Image Text: Example 5 The cumulative distribution function of a continuous random variable X is: 0 for < -2 0.25 +0.5 for – 2 1.2) using F(). (c) Determine P(0 < X < 1.25) using F(x). (d) Determine P(0 < X < 1.25) using f(x). (e) Construct F(x) from your answer in (a).
More
Transcribed Image Text: Example 5 The cumulative distribution function of a continuous random variable X is: 0 for < -2 0.25 +0.5 for – 2 1.2) using F(). (c) Determine P(0 < X < 1.25) using F(x). (d) Determine P(0 < X < 1.25) using f(x). (e) Construct F(x) from your answer in (a).