Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
General GuidanceThe answer provided below has been developed in a clear step by step manner.Step: 1In order to solve this problem, first, we should know the following for the system of two linear equations a1x + b1y = c1 and a2x + b2y = c2:If \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}, then the system has one solutionIf \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}, then the system has infinite solutionsIf \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}, then the system has No solutionWe can use the conditions shown above to find the values of a, b and c for each case. Explanation:Please refer to solution in this step.Step: 2.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listLTR{margin-left:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listRTL{margin-right:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listLTR{margin-left:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listRTL{margin-right:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listLTR{margin-left:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listRTL{margin-right:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listLTR{margin-left:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listRTL{margin-right:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listLTR{margin-left:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listRTL{margin-right:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem{list-style-type:square;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth0{list-style-type:disc;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth1{list-style-type:circle;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem{list-style-type:none;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listLTR:before{left:-36px;position:absolute;text-align:right;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listRTL:before{position:absolute;right:-36px;text-align:left;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem:before{content:counter(ol0) '. ';counter-increment:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth1:before{content:counter(ol1,lower-alpha) '. ';counter-increment:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth2:before{content:counter(ol2,lower-roman) '. ';counter-increment:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth3:before{content:counter(ol3) '. ';counter-increment:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth4:before{content:counter(ol4,lower-alpha) '. ';counter-increment:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-reset{counter-reset:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-reset{counter-reset:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-reset{counter-reset:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-reset{counter-reset:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-reset{counter-reset:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{text-align:inherit;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{text-align:inherit;}/*!sc*/ data-styled.g370[id="sc-mwpquf-4"]{content:"cpESDm,"}/*!sc*/ .jhimFq{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;box-sizing:border-box;border:2px solid transparent;}/*!sc*/ .jhimFq h2{font-size:16px;}/*!sc*/ .jhimFq h3{font-size:14px;}/*!sc*/ data-styled.g371[id="sc-mo29cs-0"]{content:"jhimFq,"}/*!sc*/ .iQAUeM{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ data-styled.g586[id="sc-z3f5s1-0"]{content:"iQAUeM,"}/*!sc*/ .gOmRZU{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;width:100%;text-align:center;}/*!sc*/ data-styled.g588[id="sc-1uwiggj-0"]{content:"gOmRZU,"}/*!sc*/ .cjeDVH{max-width:70%;}/*!sc*/ data-styled.g589[id="sc-1uwiggj-1"]{content:"cjeDVH,"}/*!sc*/ .bVFlsN{margin:0;}/*!sc*/ data-styled.g591[id="sc-1swtczx-0"]{content:"bVFlsN,"}/*!sc*/ .gpAhdE{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/ data-styled.g605[id="sc-1sugbjn-0"]{content:"gpAhdE,"}/*!sc*/ Answer (a):We can rewrite the first equation x - 2y = 1 as 1x - 2y = 1 and the second equation is ax + by = 5. So if we compare them with a1x + b1y = c1 and a2x + b2y = c2, then a1 = 1, a2 = a, b1 = -2, b2 = b, c1 = 1 and c2 = 5:Now for it to be one solution a1/a2 u2260 b1/b2, hence, 1/a u2260 -2/b. Now for them to not be equal, we can consider a = 3 and b = 4 becasue 1/3 is note equal to -2/4. Hence, for it to be one solution, a = 3 and b = 4Now for it to have infinite soluions, a1/a2 = b1/b2 = c1/c2 Hence, 1/a = -2/b = 1/5. For all three of them to be equal, a = 5, b = -10 will work becasue -2/-10 can be reduced to 1/5. Hence, for infinite solutions, a = 5 and b = -10Now for it to be No solution, a1/a2 = b1/b2 u2260 c1/c2Hence, 1/a = -2/b u2260 1/5. So for the first two fractions to be equal, we can have a = 2 and b = -4 because -2/-4 can be reduced to 1/2 and they are not equal to 1/5. Hence, for no solution, a = 2 and b = -4Explanation:Please refer to solution in this step.Step: 3.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listLTR{margin-left:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listRTL{margin-right:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listLTR{margin-left:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listRTL{margin-right:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listLTR{margin-left:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listRTL{margin-right:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listLTR{margin-left:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listRTL{margin-right:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listLTR{margin-left:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listRTL{margin-right:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem{list-style-type:square;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth0{list-style-type:disc;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth1{list-style-type:circle;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem{list-style-type:none;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listLTR:before{left:-36px;position:absolute;text-align:right;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listRTL:before{position:absolute;right:-36px;text-align:left;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem:before{content:counter(ol0) '. ';counter-increment:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth1:before{content:counter(ol1,lower-alpha) '. ';counter-increment:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth2:before{content:counter(ol2,lower-roman) '. ';counter-increment:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth3:before{content:counter(ol3) '. ';counter-increment:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth4:before{content:counter(ol4,lower-alpha) '. ';counter-increment:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-reset{counter-reset:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-reset{counter-reset:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-reset{counter-reset:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-reset{counter-reset:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-reset{counter-reset:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{text-align:inherit;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{text-align:inherit;}/*!sc*/ data-styled.g370[id="sc-mwpquf-4"]{content:"cpESDm,"}/*!sc*/ .jhimFq{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;box-sizing:border-box;border:2px solid transparent;}/*!sc*/ .jhimFq h2{font-size:16px;}/*!sc*/ .jhimFq h3{font-size:14px;}/*!sc*/ data-styled.g371[id="sc-mo29cs-0"]{content:"jhimFq,"}/*!sc*/ .iQAUeM{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ data-styled.g586[id="sc-z3f5s1-0"]{content:"iQAUeM,"}/*!sc*/ .gOmRZU{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;width:100%;text-align:center;}/*!sc*/ data-styled.g588[id="sc-1uwiggj-0"]{content:"gOmRZU,"}/*!sc*/ .cjeDVH{max-width:70%;}/*!sc*/ data-styled.g589[id="sc-1uwiggj-1"]{content:"cjeDVH,"}/*!sc*/ .bVFlsN{margin:0;}/*!sc*/ data-styled.g591[id="sc-1swtczx-0"]{content:"bVFlsN,"}/*!sc*/ .gpAhdE{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/ data-styled.g605[id="sc-1sugbjn-0"]{content:"gpAhdE,"}/*!sc*/ Answer (b):In part b, we can see that a1 = 1, b1 = b, c1= -1, a2 = a, b2 = 2 and c2 = 5Now for one solution, the condition is a1/a2 u2260 b1/b2 So it becomes 1/a u2260 b/2. For these fractions to not be equal, we can consider a = 3 and b = 5 as 1/3 u2260 5/2. Hence, for one solution, a = 3 and b = 5For infinite solutions, the condition is a1/a2 = b1/b2 = c1/c2 So now it looks like 1/a = b/2 = -1/5, now this condition is possible if a = -5 and b = -2/5; in this case all three would be equal to -1/5. Hence, for infinite solutions, a = -5 and b = -2/5For no solution, the condition is a1/a2 = b1/b2 u2260 c1/c2 So it looks like 1/a = b/2 u2260 -1/5, now for the first two fractions to be equal we can have a = 2 and b = 1. In that case, the first two fractions will be 1/2 which is not equal to -1/5.Explanation:Please refer to solution in this step.Step: 4.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listLTR{margin-left:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listRTL{margin-right:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listLTR{margin-left:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listRTL{margin-right:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listLTR{margin-left:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listRTL{margin-right:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listLTR{margin-left:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listRTL{margin-right:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listLTR{margin-left:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listRTL{margin-right:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem{list-style-type:square;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth0{list-style-type:disc;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth1{list-style-type:circle;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem{list-style-type:none;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listLTR:before{left:-36px;position:absolute;text-align:right;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listRTL:before{position:absolute;right:-36px;text-align:left;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem:before{content:counter(ol0) '. ';counter-increment:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth1:before{content:counter(ol1,lower-alpha) '. ';counter-increment:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth2:before{content:counter(ol2,lower-roman) '. ';counter-increment:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth3:before{content:counter(ol3) '. ';counter-increment:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth4:before{content:counter(ol4,lower-alpha) '. ';counter-increment:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-reset{counter-reset:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-reset{counter-reset:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-reset{counter-reset:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-reset{counter-reset:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-reset{counter-reset:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{text-align:inherit;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{text-align:inherit;}/*!sc*/ data-styled.g370[id="sc-mwpquf-4"]{content:"cpESDm,"}/*!sc*/ .jhimFq{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;box-sizing:border-box;border:2px solid transparent;}/*!sc*/ .jhimFq h2{font-size:16px;}/*!sc*/ .jhimFq h3{font-size:14px;}/*!sc*/ data-styled.g371[id="sc-mo29cs-0"]{content:"jhimFq,"}/*!sc*/ .iQAUeM{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ data-styled.g586[id="sc-z3f5s1-0"]{content:"iQAUeM,"}/*!sc*/ .gOmRZU{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;width:100%;text-align:center;}/*!sc*/ data-styled.g588[id="sc-1uwiggj-0"]{content:"gOmRZU,"}/*!sc*/ .cjeDVH{max-width:70%;}/*!sc*/ data-styled.g589[id="sc-1uwiggj-1"]{content:"cjeDVH,"}/*!sc*/ .bVFlsN{margin:0;}/*!sc*/ data-styled.g591[id="sc-1swtczx-0"]{content:"bVFlsN,"}/*!sc*/ .gpAhdE{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/ data-styled.g605[id="sc-1sugbjn-0"]{content:"gpAhdE,"}/*!sc*/ Answer (c):Now in part c, we have a1 = 1, a2 = 1, b1 = -b, b2 = a, c1 = -1 and c2 = 3For one solution, the condition should be 1/1 u2260 -b/a. For these two fractions not to be equal, we can have a = 3 and b = 2 as 1/1 is not equal to -2/3. Hence, for one solution, a = 3 and b = 2For infinite solutions, it should meet this condition: 1/1 = -b/a = -1/3. This condition is not possible because -1/3 can never be equal to 1/1. Hence, no infinite solutions possible For no solution, the condition shoudl be 1/1 = -b/a u2260 -1/3Now fir the first two fractions to be equal, we can have a = 1 and b = -1. Hence, for a = 1 and b = -1, it has no solution Explanation:Please refer to solution in this step.Step: 5.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listLTR{margin-left:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listRTL{margin-right:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listLTR{margin-left:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listRTL{margin-right:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listLTR{margin-left:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listRTL{margin-right:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listLTR{margin-left:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listRTL{margin-right:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listLTR{margin-left:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listRTL{margin-right:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem{list-style-type:square;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth0{list-style-type:disc;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth1{list-style-type:circle;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem{list-style-type:none;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listLTR:before{left:-36px;position:absolute;text-align:right;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listRTL:before{position:absolute;right:-36px;text-align:left;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem:before{content:counter(ol0) '. ';counter-increment:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth1:before{content:counter(ol1,lower-alpha) '. ';counter-increment:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth2:before{content:counter(ol2,lower-roman) '. ';counter-increment:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth3:before{content:counter(ol3) '. ';counter-increment:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth4:before{content:counter(ol4,lower-alpha) '. ';counter-increment:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-reset{counter-reset:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-reset{counter-reset:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-reset{counter-reset:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-reset{counter-reset:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-reset{counter-reset:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{text-align:inherit;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{text-align:inherit;}/*!sc*/ data-styled.g370[id="sc-mwpquf-4"]{content:"cpESDm,"}/*!sc*/ .jhimFq{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;box-sizing:border-box;border:2px solid transparent;}/*!sc*/ .jhimFq h2{font-size:16px;}/*!sc*/ .jhimFq h3{font-size:14px;}/*!sc*/ data-styled.g371[id="sc-mo29cs-0"]{content:"jhimFq,"}/*!sc*/ .iQAUeM{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ data-styled.g586[id="sc-z3f5s1-0"]{content:"iQAUeM,"}/*!sc*/ .gOmRZU{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;width:100%;text-align:center;}/*!sc*/ data-styled.g588[id="sc-1uwiggj-0"]{content:"gOmRZU,"}/*!sc*/ .cjeDVH{max-width:70%;}/*!sc*/ data-styled.g589[id="sc-1uwiggj-1"]{content:"cjeDVH,"}/*!sc*/ .bVFlsN{margin:0;}/*!sc*/ data-styled.g591[id="sc-1swtczx-0"]{content:"bVFlsN,"}/*!sc*/ .gpAhdE{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/ data-styled.g605[id="sc-1sugbjn-0"]{content:"gpAhdE,"}/*!sc*/ Answer (d):In part d, we have a1 = a, a2 = 2, b1 = 1, b2 = 1, c1 = 1 and c2 = b:Now for one solution, it should meet this condition: a/2 u2260 1/1. So a could be 3 as 3/2 is not equal to 1/1. And b could be any random number, say, 5. So, for one solution, we have a = 3 and b = 5.For infinite solutions, it should meet this condition: a/2 = 1/1 = 1/b. It is possible when a = 2 and b = 1 as all of them would be 1/1 then. So for infinite solutions we have a = 2 and b = 1For no solution, it should meet this condition: a/2 = 1/1 u2260 1/b. It is possible if a = 2 and b = 3. So for no solution we have a = 2 and b = 3Explanation:Please refer to solution in this step.Answer:.lcWjel{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;font-size:0.75rem;box-sizing:border-box;}/*!sc*/ data-styled.g366[id="sc-mwpquf-0"]{content:"lcWjel,"}/*!sc*/ .loOCZZ{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;}/*!sc*/ .loOCZZ .align-left{text-align:left;}/*!sc*/ .loOCZZ .align-center{text-align:center;}/*!sc*/ .loOCZZ .align-right{text-align:right;}/*!sc*/ data-styled.g367[id="sc-mwpquf-1"]{content:"loOCZZ,"}/*!sc*/ .cpESDm .DraftEditor-editorContainer,.cpESDm .DraftEditor-root,.cpESDm .public-DraftEditor-content{height:inherit;text-align:initial;}/*!sc*/ .cpESDm .public-DraftEditor-content[contenteditable='true']{-webkit-user-modify:read-write-plaintext-only;}/*!sc*/ .cpESDm .DraftEditor-root{position:relative;}/*!sc*/ .cpESDm .DraftEditor-editorContainer{background-color:rgba(255,255,255,0);border-left:0.1px solid transparent;position:relative;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditor-block{position:relative;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftStyleDefault-block{text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignLeft .public-DraftEditorPlaceholder-root{left:0;text-align:left;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftStyleDefault-block{text-align:center;}/*!sc*/ .cpESDm .DraftEditor-alignCenter .public-DraftEditorPlaceholder-root{margin:0 auto;text-align:center;width:100%;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftStyleDefault-block{text-align:right;}/*!sc*/ .cpESDm .DraftEditor-alignRight .public-DraftEditorPlaceholder-root{right:0;text-align:right;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-root{color:#9197a3;position:absolute;width:100%;z-index:1;}/*!sc*/ .cpESDm .public-DraftEditorPlaceholder-hasFocus{color:#bdc1c9;}/*!sc*/ .cpESDm .DraftEditorPlaceholder-hidden{display:none;}/*!sc*/ .cpESDm .public-DraftStyleDefault-block{position:relative;white-space:pre-wrap;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{direction:ltr;text-align:left;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{direction:rtl;text-align:right;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listLTR{direction:ltr;}/*!sc*/ .cpESDm .public-DraftStyleDefault-listRTL{direction:rtl;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ol,.cpESDm .public-DraftStyleDefault-ul{margin:16px 0;padding:0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listLTR{margin-left:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-listRTL{margin-right:1.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listLTR{margin-left:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-listRTL{margin-right:3em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listLTR{margin-left:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-listRTL{margin-right:4.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listLTR{margin-left:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-listRTL{margin-right:6em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listLTR{margin-left:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-listRTL{margin-right:7.5em;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem{list-style-type:square;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth0{list-style-type:disc;}/*!sc*/ .cpESDm .public-DraftStyleDefault-unorderedListItem.public-DraftStyleDefault-depth1{list-style-type:circle;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem{list-style-type:none;position:relative;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listLTR:before{left:-36px;position:absolute;text-align:right;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-listRTL:before{position:absolute;right:-36px;text-align:left;width:30px;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem:before{content:counter(ol0) '. ';counter-increment:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth1:before{content:counter(ol1,lower-alpha) '. ';counter-increment:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth2:before{content:counter(ol2,lower-roman) '. ';counter-increment:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth3:before{content:counter(ol3) '. ';counter-increment:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-orderedListItem.public-DraftStyleDefault-depth4:before{content:counter(ol4,lower-alpha) '. ';counter-increment:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth0.public-DraftStyleDefault-reset{counter-reset:ol0;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth1.public-DraftStyleDefault-reset{counter-reset:ol1;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth2.public-DraftStyleDefault-reset{counter-reset:ol2;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth3.public-DraftStyleDefault-reset{counter-reset:ol3;}/*!sc*/ .cpESDm .public-DraftStyleDefault-depth4.public-DraftStyleDefault-reset{counter-reset:ol4;}/*!sc*/ .cpESDm .public-DraftStyleDefault-ltr{text-align:inherit;}/*!sc*/ .cpESDm .public-DraftStyleDefault-rtl{text-align:inherit;}/*!sc*/ data-styled.g370[id="sc-mwpquf-4"]{content:"cpESDm,"}/*!sc*/ .jhimFq{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;box-sizing:border-box;border:2px solid transparent;}/*!sc*/ .jhimFq h2{font-size:16px;}/*!sc*/ .jhimFq h3{font-size:14px;}/*!sc*/ data-styled.g371[id="sc-mo29cs-0"]{content:"jhimFq,"}/*!sc*/ .frjQru{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;line-height:normal;}/*!sc*/ data-styled.g583[id="sc-fh7n12-0"]{content:"frjQru,"}/*!sc*/ .iQAUeM{margin:0;font-family:"Aspira Webfont","Helvetica","Arial",sans-serif;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;gap:16px;}/*!sc*/ data-styled.g586[id="sc-z3f5s1-0"]{content:"iQAUeM,"}/*!sc*/ .bVFlsN{margin:0;}/*!sc*/ data-styled.g591[id="sc-1swtczx-0"]{content:"bVFlsN,"}/*!sc*/ Answer (a): One solution: a = 3 and b = 4Infinite solutions: a = 5 and b = -10No solution: a = 2 and b = -4Answer (b):One solution: a = 3 and b = 5Infinite solutions: a = -5 and b = -2/5No solution: a = 2 and b = 1Answer (c):One solution: a = 3 and b = 2Infinite solutions: Not possibleNo solution: a = 1 and b = -1Answer (d):One solution: a = 3 and b = 5Infinite solutions: a = 2 and b = 1No solution: a = 2 and b = 3 ...