Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Q\begin{array}{l} x_{1}+x_{2}-x_{3}+2 x_{4}+x_{5}=0 \\x_{1}+2 x_{2}-x_{3}+x_{4}+x_{5}=0 \\2 x_{1}+3 x_{2}-x_{3}+2 x_{4}+x_{5}=0 \\4 x_{1}+5 x_{2}-2 x_{3}+5 x_{4}+2 x_{5}=0\end{array}Sel : \rightarrow We can write this system as A x=b\left[\begin{array}{ccccc}1 & 1 & -1 & 2 & 1 \\1 & 2 & -1 & 1 & 1 \\2 & 3 & -1 & 2 & 1 \\4 & 5 & -2 & 5 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4} \\x_{5}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0 \\0\end{array}\right]The Augmented Matrix\begin{array}{l}{[A \mid b]=\left[\begin{array}{ccccc|c}1 & 1 & -1 & 2 & 1 & 0 \\1 & 2 & -1 & 1 & 1 & 0 \\2 & 3 & -1 & 2 & 1 & 0 \\4 & 5 & -2 & 5 & 2 & 0\end{array}\right]} \\R_{2} \rightarrow R_{2}-R_{1}, \quad R_{3} \rightarrow R_{3}-2 R_{1}\end{array}R_{2} \rightarrow R_{2}-R_{1}, \quad R_{3} \rightarrow R_{3}-2 R_{1}, R_{4} \rightarrow R_{4}-4 R_{1}[A \mid b]=\left[\begin{array}{ccccc|c}1 & 1 & -1 & 2 & 1 & 0 \\0 & 1 & 0 & -1 & 0 & 0 \\0 & 1 & 1 & -2 & -1 & 0 \\0 & 1 & 2 & -3 & -2 & 0\end{array}\right]R_{1} \rightarrow R_{1}-R_{2}, R_{3} \rightarrow R_{3}-R_{2}, R_{4} \rightarrow R_{4}-R_{2}[A \mid b]=\left[\begin{array}{ccccc|c}1 & 0 & -1 & 3 & 1 & 0 \\0 & 1 & 0 & -1 & 0 & 0 \\0 & 0 & 1 & -1 & -1 & 0 \\0 & 0 & 2 & -2 & -2 & 0\end{array}\right]\begin{array}{c}R_{4} \rightarrow R_{4}-2 R_{3} \\{[A \mid b]=\left[\begin{array}{ccccc|c}1 & 0 & -1 & 3 & 1 & 0 \\0 & 1 & 0 & -1 & 0 & 0 \\0 & 0 & 1 & -1 & -1 & 0 \\0 & 0 & 0 & 0 & 0 & 0\end{array}\right]} \\R_{1} \rightarrow R_{1}+R_{3} \\{[A \mid b]=\left[\begin{array}{ccccc|c}1 & 0 & 0 & 2 & 0 & 0 \\0 & 1 & 0 & -1 & 0 & 0 \\0 & 0 & 1 & -1 & -1 & 0 \\0 & 0 & 0 & 0 & 0 & 0\end{array}\right]}\end{array}So Now Corresponding system of equation is\begin{array}{l}x_{1}+2 x_{4}=0 \Rightarrow x_{1}=-2 x_{4} \\x_{2}-x_{4}=0 \Rightarrow x_{2}=x_{4} \\x_{3}-x_{4}-x_{5}=0 \\\quad x_{3}=x_{4}-x_{5} \\\text { let } x_{5}=t, \quad x_{4}=5 \\\Rightarrow \quad x_{3}=5-t \\x_{2}=5 \\x_{1}=-25\end{array}hence generel salution syx=\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3} \\x_{4} \\x_{5}\end{array}\right]=\left[\begin{array}{c}-2 s \\s \\s-t \\s \\t\end{array}\right]=s\left[\begin{array}{c}-2 \\1 \\1 \\1 \\0\end{array}\right]+t\left[\begin{array}{c}0 \\0 \\-1 \\0 \\1\end{array}\right] \text { Ay } ...