Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Unit step function is given by\begin{array}{l}u(t-a)=\left\{\begin{array}{ll}0 & t<a \\1 & t>a\end{array} \quad\right. \\\therefore u(t-\pi)=\left\{\begin{array}{ll}0 & t<\pi \\1 & t>\pi\end{array} \text { and } u(t-3 \pi)=\left\{\begin{array}{ll}0 & t<3 \pi \\1 & t>3 \pi\end{array}\right.\right.\end{array}L( 6Considerf(t)=-\sin (t-\pi) u(t-\pi)+\sin (t-3 \pi) u(t-3 \pi) \text {. }\therefore If t<\pi thenf(t)=-\sin (t-\pi)(0)+\sin (t-3 \pi)(0) \ldots(\text { by }(1) f(2))\Rightarrow f(t)=0 if t<\piIf \pi<t<3 \pi then\begin{aligned}f(t) & =-\sin (t-\pi)(1)+\sin (t-3 \pi)(0) \quad \ldots\left(b_{y}(1) t(2)\right) \\& =-\sin (t-\pi)=-\sin (-(\pi-t)) \\& =\sin (\pi-t) \quad(\because \sin (-\theta)=-\sin \theta) \\\Rightarrow f(t) & =\sin (t) \text { if } \pi<t<3 \pi \quad(\because \sin (\pi-\theta)=\sin \theta)\end{aligned}If t>3 \pi, then\begin{aligned}f(t) & =-\sin (t-\pi)(1)+\sin (t-3 \pi) \\& =-\sin (t-\pi)+\sin (t-\pi-2 \pi) \\& =-\sin (t-\pi)+\sin (t-\pi) \quad(0 \sin (\theta-2 \pi)=\sin \theta) \\\Rightarrow f(t) & =0 \text { if } t>3 \pi\end{aligned}\therefore Given function f can be expressed asf(t)=-\sin (t-\pi) u(t-\pi)+\sin (t-3 \pi) u(t-3 \pi) \text {. }\Rightarrow option (5) - correct.\begin{array}{l} L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \\=\int_{0}^{\pi} e^{-s t} \cdot(0) d t+\int_{\pi}^{3 \pi} e^{-s t} \sin t d t+\int_{3 \pi}^{\infty} e^{-s t}(0) d t \\I=\int_{\pi}^{3 \pi} e^{-s t} \sin t d t \\=-\left.\frac{e^{-s t} \sin t}{s}\right|_{\pi} ^{3 \pi}+\int_{\pi}^{3 \pi} \cos t \cdot \frac{e^{-s t}}{s} d t \\=-\frac{1}{s}(0)+\frac{1}{s}\left[\left.\frac{e^{-s t}}{-s} \cos t\right|_{\pi} ^{3 \pi}-\int_{\pi}^{3 \pi}-\sin t \cdot-\frac{e^{-s t}}{s^{2}}\right] \\=-\frac{1}{s^{2}}\left[-e^{-3 \pi s}+e^{-\pi s}\right]-\frac{I}{s^{2}} \\I+\frac{I}{s^{2}}=\frac{1}{s^{2}}\left[e^{-3 \pi s}-e^{-\pi s}\right] \\I=\frac{1}{s^{2}+1}\left[e^{-3 \pi s}-e^{-\pi s}\right] \\\therefore L\{f(t)\}=\frac{e^{-3 \pi s}-e^{-\pi s}}{s^{2}+1}\end{array}Note that, if 2\{f(t)\}=F(s) then\begin{array}{c}L\left\{e^{a t} f(t)\right\}=F(s-a) \\\therefore L\left\{e^{t} f(t)\right\}=\frac{e^{-3 \pi(s-1)}-e^{-\pi(s-1)}}{(s-1)^{2}+1} \quad(\because a=1)\end{array} ...