Question Solved1 Answer Fast equilibrium CI + CO COCI Fast equilibrium COCI + Cl2 ks, COCl2 + 1 Slow 2CI kt Cl2 Fast Consider each of the following expressions and select "Yes" or "No" to indicate which represent a correct statement of the rate law that is consistent with the given mechanism. Yes: -d[Co]/dt = k[Cl21/2[CO] No: d[COCI2]/dt = k[Cl2]1/2[CO] No: d[COCI]/dt = k[CI2 Yes: d[COCIz]/dt = K[CO][Cl223/2 Yes: -d[Cl2]/dt = K[CO][Cl2]3/2 No: d[COCI21/dt = K[CI][CO] 1pts You are correct. Previous Tries Which of the following are correct expressions for the overall rate constant? Yes v k = ([(k2k3)/(k-2)])/{{[(K)/(k-1)])1/21; No v k = [(kg! 1/21k2k3)/(k_1 [1/2]K-2)] No v k = [(k-1k2kz)/(k1K-2)] Yes v k = [(ky! 1/21k2k364)/(K 111/21k 2)] Yes v k = ([(kyk3)/(k-))]/([(k/(k-1)])[1/2] 1pts Submit Answer Incomert Tries 415 Previous Tries

CBJZKU The Asker · Chemical Engineering

Transcribed Image Text: Fast equilibrium CI + CO COCI Fast equilibrium COCI + Cl2 ks, COCl2 + 1 Slow 2CI kt Cl2 Fast Consider each of the following expressions and select "Yes" or "No" to indicate which represent a correct statement of the rate law that is consistent with the given mechanism. Yes: -d[Co]/dt = k[Cl21/2[CO] No: d[COCI2]/dt = k[Cl2]1/2[CO] No: d[COCI]/dt = k[CI2 Yes: d[COCIz]/dt = K[CO][Cl223/2 Yes: -d[Cl2]/dt = K[CO][Cl2]3/2 No: d[COCI21/dt = K[CI][CO] 1pts You are correct. Previous Tries Which of the following are correct expressions for the overall rate constant? Yes v k = ([(k2k3)/(k-2)])/{{[(K)/(k-1)])1/21; No v k = [(kg! 1/21k2k3)/(k_1 [1/2]K-2)] No v k = [(k-1k2kz)/(k1K-2)] Yes v k = [(ky! 1/21k2k364)/(K 111/21k 2)] Yes v k = ([(kyk3)/(k-))]/([(k/(k-1)])[1/2] 1pts Submit Answer Incomert Tries 415 Previous Tries
More
Transcribed Image Text: Fast equilibrium CI + CO COCI Fast equilibrium COCI + Cl2 ks, COCl2 + 1 Slow 2CI kt Cl2 Fast Consider each of the following expressions and select "Yes" or "No" to indicate which represent a correct statement of the rate law that is consistent with the given mechanism. Yes: -d[Co]/dt = k[Cl21/2[CO] No: d[COCI2]/dt = k[Cl2]1/2[CO] No: d[COCI]/dt = k[CI2 Yes: d[COCIz]/dt = K[CO][Cl223/2 Yes: -d[Cl2]/dt = K[CO][Cl2]3/2 No: d[COCI21/dt = K[CI][CO] 1pts You are correct. Previous Tries Which of the following are correct expressions for the overall rate constant? Yes v k = ([(k2k3)/(k-2)])/{{[(K)/(k-1)])1/21; No v k = [(kg! 1/21k2k3)/(k_1 [1/2]K-2)] No v k = [(k-1k2kz)/(k1K-2)] Yes v k = [(ky! 1/21k2k364)/(K 111/21k 2)] Yes v k = ([(kyk3)/(k-))]/([(k/(k-1)])[1/2] 1pts Submit Answer Incomert Tries 415 Previous Tries
See Answer
Add Answer +20 Points
Community Answer
HHG0CN The First Answerer
See all the answers with 1 Unlock
Get 4 Free Unlocks by registration

Solution7 - 7-given:(1){:" Fust equilibrium ":}(ii) Cl+CO(K_(k+2)^(R))/(k_(k-2))cocl(" (2) ")/(" Fast equilibrium ")(iii) CoCl+Cl_(2)longrightarrow^(k_(3))CoCO_(2)+cl- (3)slome(iv)2ClFCll_(2)Cut_(K_(4))neote**^(') so Rate defermining step is slowest-step.Slocuest-step is the Rate determining step.case-(1) from Recction - (1) -7-7- from=>quadCl2(k+1)/(T_(K-1))2clquad" Fast equilibrium "=> Apply equilibrium lave-{:[=>quad(∣alpha+1)/(k-1)=([cl]^(2))/([cos_(8)])],[" cy "Cl_(2)". "],[=>[C]]=((k+1)/(alpha^(2)-1))^((1)/(2))*(^(n)C_(2))(1)/(2)]:}case-(2)y-y- from Reaction-(2)Cl+co(k+2)/(T_(k-2))" cocl Fust equilibrivm "=> Apply equilibricum laue-alpha_("ey ")=( hat(alpha)_(+2))/([alpha-2)=([" cocl "])/([ < e][(00]){:[=>quad(k+2)/(k-2)=([coce])/([ce][co])],[=>quad[cocl]=((k+2)/(k-2))xx[Cl][co]]:}put the value of [Ce] from equation-(5){:[=>quad[cocl]=((k+2)/(k-2))xx((k^(2)+1)/(k-1))^((1)/(2))xx[CO_(z)]^((1)/(2))xx[co]],[=>quad[cocl]=((1alpha+2)/(∣alpha-2))xx((∣alpha+1)/(∣alpha-1))^((1)/(2))xx[Cl_(2)]^((1)/(2))+[co]]:}cuse-(3) from equation- Recection-(3)-6only-slowest - step is the Rate determining -stepr-COCl+Cl_(2)longrightarrowCOCl_(2)+Cl^(K_(3))^(" Sloce ")(1) Rate of disapperance of (co) from above Roaction-{:-(d[(0])/(dt)=alpha_(3)*( hat(n))coc 0][cos_(3)]=> put the value of [coc 0] from equation-(6){:[ ... See the full answer