Find a function 𝑓(𝑥,𝑦,𝑧) such that ∇𝑓 is the constant vector 〈8,9,4〉. (Use symbolic notation and fractions where needed. Use 𝐶 for the constant of integration.)
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution:- Given \vec{\nabla} f is the coustant vector \langle 8,9,4\rangle\begin{array}{c}\therefore \vec{\nabla} f=\langle 8,9,4\rangle \\\Rightarrow \quad\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle 8,9,4\rangle \\\Rightarrow \quad \frac{\partial f}{\partial x}=8, \quad \frac{\partial f}{\partial y}=9 ; \quad \frac{\partial f}{\partial z}=4 .\end{array}now,\begin{aligned}\Rightarrow \frac{\partial f}{\partial x} & =8 \\\partial f & =8 \cdot \partial x\end{aligned}Iufegrating\begin{aligned}\int \partial f & =\int 8 \cdot d x \\f & =8 x+f_{1}(y, z) \rightarrow(1)\end{aligned}\text { and } \Rightarrow \begin{aligned}\frac{\partial f}{\partial y} & =9 \\\partial f & =9 \cdot \partial y \\\int \partial f & =\int 9 \partial y \\f & =9 y+f_{2}(x, z)\end{aligned}\text { and } \Rightarrow \quad \begin{aligned}\frac{\partial f}{\partial z} & =4 \\\partial f & =4 \partial z \\\int \partial f & =\int 4 \partial z \\f & =4 z+f_{3}(x, y) \rightarrow 3\end{aligned}where f_{1}, f_{2}, f_{3} are Arbitary functions of the variables indicated equation (1), (2) +3 . we choose\begin{array}{l}f_{1}(y, z)=9 y+4 z \\f_{2}(x, z)=8 x+4 z \\f_{3}(x, y)=8 x+9 y\end{array}So that f(x, y, z)=8 x+9 y+4 z which we may add a constaut\therefore f(x, y, z)=8 x+9 y+4 z+c \text { thauk } y_{04} ...