Find a function 𝑓(𝑥,𝑦,𝑧) such that ∇𝑓 is the constant vector 〈8,9,4〉. (Use symbolic notation and fractions where needed. Use 𝐶 for the constant of integration.)

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

Solution:- Given \vec{\nabla} f is the coustant vector \langle 8,9,4\rangle\begin{array}{c}\therefore \vec{\nabla} f=\langle 8,9,4\rangle \\\Rightarrow \quad\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=\langle 8,9,4\rangle \\\Rightarrow \quad \frac{\partial f}{\partial x}=8, \quad \frac{\partial f}{\partial y}=9 ; \quad \frac{\partial f}{\partial z}=4 .\end{array}now,\begin{aligned}\Rightarrow \frac{\partial f}{\partial x} & =8 \\\partial f & =8 \cdot \partial x\end{aligned}Iufegrating\begin{aligned}\int \partial f & =\int 8 \cdot d x \\f & =8 x+f_{1}(y, z) \rightarrow(1)\end{aligned}\text { and } \Rightarrow \begin{aligned}\frac{\partial f}{\partial y} & =9 \\\partial f & =9 \cdot \partial y \\\int \partial f & =\int 9 \partial y \\f & =9 y+f_{2}(x, z)\end{aligned}\text { and } \Rightarrow \quad \begin{aligned}\frac{\partial f}{\partial z} & =4 \\\partial f & =4 \partial z \\\int \partial f & =\int 4 \partial z \\f & =4 z+f_{3}(x, y) \rightarrow 3\end{aligned}where f_{1}, f_{2}, f_{3} are Arbitary functions of the variables indicated equation (1), (2) +3 . we choose\begin{array}{l}f_{1}(y, z)=9 y+4 z \\f_{2}(x, z)=8 x+4 z \\f_{3}(x, y)=8 x+9 y\end{array}So that f(x, y, z)=8 x+9 y+4 z which we may add a constaut\therefore f(x, y, z)=8 x+9 y+4 z+c \text { thauk } y_{04} ...