Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
y^{\prime \prime}-8 y^{\prime}+16 y=\frac{-0.5 e^{4 t}}{t^{2}+1}corresponding homogeneous differential equation is, y^{\prime \prime}-8 y^{\prime}+16 y=0 \ldots(2)\therefore The auxillary eqn of (2) is,\begin{array}{l}m^{2}-8 m+16=0 \\\therefore(m-4)^{2}=0 \ldots\left[(a-b)^{2}=a^{2}-2 a b+b^{2}\right] \\\therefore m=4,4 \text { (repeated goots.). } \\\end{array}\therefore General solution of (2) is,y_{h}(t)=c_{1} e^{a t}+c_{2} t e^{4 t}where C_{1} C_{2} are constants f y_{1}=e^{u t}+y_{2}=t e^{u t}.Now, To find the particulor solution of (T), for this we ase the variation of param eter method.Let y_{p}(t)=v_{1} y_{1}+v_{2} y_{2}where v_{1}=-\int \frac{y_{2} \cdot R(t)}{w\left(y_{1} y_{2}\right)} d t, v_{2}=\int \frac{y_{1}-R(t)}{w\left(y_{1} y_{2}\right)} d t.\begin{aligned}W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}y_{1} & y_{2} \\y_{1}^{\prime \prime} & y_{2}^{\prime}\end{array}\right| & =\left|\begin{array}{cc}e^{4 t} & t e^{4 t} \\4 e^{4 t} & e^{4 t}+4 t e^{4 t}\end{array}\right| \\& =e^{4 t}\left(e^{4 t}+4 t e^{4 t}\right)-4 t e^{10 t}\end{aligned}\begin{array}{l}\because w\left(y_{1}, y_{2}\right)=e^{8 t}+4 t e^{8 t}-4 t e^{8 t} . \\ =e^{8 t} \\ \epsilon_{R(t)}=\frac{-0.5 e^{4 t}}{t^{2}+1} \\ \therefore v_{1}=-\int \frac{y_{2} \cdot R(t)}{w\left(y_{1}, y_{2}\right)} d t=-\int \frac{t e^{4 t} \cdot\left(-0.5 e^{(t)}\right.}{\left(t^{2}+1\right) e^{g t}} d t . \\ =\int \frac{0.5 t}{t^{2}+1} d t \\ =0.5 \int \frac{t}{t^{2}+1} d t \text {. } \\ =\frac{0.5}{2} \int \frac{2 t}{t^{2}+1} d t \quad\left(\begin{array}{l}\text { divide tmultply } \\ \text { by } 2\end{array}\right) \\ =\frac{0.5}{2} \ln \left(t^{2}+1\right) \quad \cdots\left[\because \int \frac{f^{\prime}(x)}{f(x)} d x=\ln f(x)\right] \\ \therefore v_{1}=\frac{0.5}{2} \ln \left(t^{2}+1\right) \text {. } \\ t v_{2}=\int \frac{y_{1} \cdot R(t)}{w\left(y_{1}, y_{2}\right)} d t=\int \frac{e^{4 t}\left(-0.5 e^{4 t)}\right.}{\left(t^{2}+1\right) e^{8 t}} d t . \\ =-0.5 \int \frac{1}{t^{2}+1} d t \\\end{array}\therefore V_{2}=-0.5 \tan ^{-1}(t)\therefore The parncular solution yp(t) is.\begin{aligned}y_{p}(t) & =y_{2} v_{1}+y_{2} v_{2} . \\& =e^{4 t}\left[\frac{0.5}{2} \ln \left(t^{2}+1\right)\right]+t e^{4 t}\left[-0.5 \tan ^{-1}(t)\right] \\y_{p}(t) & =e^{G t}\left[\frac{0.5}{2} \ln \left(t^{2}+1\right)-0.5 t \tan ^{-1}(t)\right]\end{aligned} ...