Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Solution: y^{\prime \prime}+8 y^{\prime}+16 y=\frac{1.5 e^{-4 t}}{t^{2}+1}Auxiliary equation is\begin{array}{l}m^{2}+8 m+16=0 \\(m+4)^{2}=0 \Rightarrow m=-4,-4\end{array}\therefore Complementary function is\begin{array}{c}y_{c}(t)=\left(c_{1}+c_{2} t\right) e^{-4 t} \\\therefore y_{1}(t)=e^{-4 t}, \quad y_{2}(t)=t e^{-4 t} \text { are linearly }\end{array}independent solutions\text { wronskian } w=\left|\begin{array}{ll}y_{1} & y_{2} \\y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\begin{array}{l}W=\left|\begin{array}{cc}e^{-4 t} & t e^{-4 t} \\-4 e^{-4 t} & e^{-4 t}-4 t e^{-4 t}\end{array}\right| \\W=e^{-8 t}+\varphi(t)=\frac{1.5 e^{-4 t}}{t^{2}+1}\end{array}\therefore by variation of parameter\begin{aligned}y_{p} & =y_{2} \int \frac{y_{1} \varphi}{w} d t-y_{1} \int \frac{y_{2} \varphi}{W} d t \\& =t e^{-4 t} \int \frac{e^{-4 t}}{e^{-8 t}} 1.5 e^{-4 t} d t-e^{-4 t} \int \frac{t e^{-4 t}}{e^{-8 t}} \frac{1.5 e^{-4 t}}{t^{2}+1} d t \\& =t e^{-4 t} \cdot 1.5 \int \frac{1}{t^{2}+1} d t-1.5 e^{-4 t} \int \frac{t}{t^{2}+1} d t \\y_{p} & =1.5 t e^{-4 t} \tan ^{-1}(t)-\frac{1.5}{2} e^{-4 t} \ln \left|1+t^{2}\right|\end{aligned}y_{p}=1.5 t e^{-4 t} \tan ^{-1}(t)-0.75 e^{-4 t} \ln \left(1+t^{2}\right) ...