Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given DE: y^{\prime \prime}+8 y^{\prime}+16 y=\frac{-13 e^{-4 t}}{t^{2}+1}Auxitiary equn of the reduced equn (1) is\begin{aligned}& m^{2}+8 m+16=0 \\\Rightarrow & m^{2}+2 \cdot m \cdot 4+4^{2}=0 \\\Rightarrow & (m+4)^{2}=0 \\\Rightarrow & m=-4,-4\end{aligned}\therefore The c \cdot F is y_{c}=\left(c_{1}+c_{2} t\right) e^{-4 t} ; c_{1}, c_{2} are arbitraryTo find P.I Here f(t)=\frac{-13 e^{-4 t}}{t^{2}+1} constantswe have y_{1}=e^{-4 t} and y_{2}=t e^{-4 t}Now,\begin{aligned}W\left(y_{1}, y_{2}\right) & =\left|\begin{array}{cc}y_{1} & y_{2} \\y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=y_{1} y_{2}-y_{2} y_{1}^{\prime} \\& =e^{-4 t} \cdot(-4 t+1) e^{-4 t}-t e^{-4 t}-4 e^{-4 t} \\& =-4 t e^{-8 t}+e^{-8 t}+4 t e^{-8 t} \\& =e^{-8 t} \neq 0\end{aligned}So, y_{1}, y_{2} are linearly independent sorution\begin{aligned}\therefore y_{p} & =-y_{1} \int \frac{f(t) \cdot y_{2}}{w} d t+y_{2} \int \frac{f(t) \cdot y_{1}}{w} d t \\& =-e^{-4 t} \int \frac{-13 e^{-4 t}}{t^{2}+1} \cdot \frac{t e^{-4 t}}{e^{-8 t}} d t+t e^{-4 t} \int \frac{-13 e^{-4 t}}{t^{2}+1} \cdot \frac{e^{-4 t}}{e^{-8 t}} d t \\& =13 e^{-4 t} \int \frac{t}{t^{2}+1} d t-13 t e^{-4 t} \int \frac{d t}{t^{2}+1} \\& =\frac{13}{2} e^{-4 t} \int \frac{2 t}{t^{2}+1} d t-13 t e^{-4 t} \tan ^{-1}(t) \\& =\frac{13}{2} e^{-4 t} \ln \left(t^{2}+1\right)-13 t e^{-4 t} \tan ^{-1}(t)\end{aligned}\therefore Which is the particular sorution of DE(1). ...