Find the solution of the equation f(x) = sin(x) − cos(1 − x^2) −
1 using Newton-Raphson
method with an initial guess of xi = 1.2. Perform two iterations
and calculate percentage
relative error after the second iteration.
Angles should be in radians
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
f(x) = sin(x) - cos(1-x2) - 1 Find solution using Newton - Raphson Method . Newton - Raphson Method is x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left(\sin (x)-\cos \left(1-x^{2}\right)-1\right) f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}(\sin (x))-\frac{\mathrm{d}}{\mathrm{d} x}\left(\cos \left(1-x^{2}\right)\right)-\frac{\mathrm{d}}{\mathrm{d} x}(1) f^{\prime}(x)=\cos (x)+\sin \left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{d} x}\left(1-x^{2}\right)-0        f^{\prime}(x)=\cos (x)+\sin \left(1-x^{2}\right)(-2 x) f^{\prime}(x)=\cos (x)-2 x \sin \left(1-x^{2}\right) Initial guess x0 = 1.2 [Given] Ist Iteration : Put n = 0 in above formula-  x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} f(1.2)=\sin (1.2)-\cos \left[1-(1.2)^{2}\right]-1 f(1.2)=\sin (1.2)-\cos [1-1.44]-1 f(1.2)=\sin (1.2)-\cos (-0.44)-1 f(1.2)=0.932039086-0.9047516632-1 f(1.2) = -0.9727 f^{\prime}(1.2)=\cos (1.2)-2 \times 1.2 \times \sin \left(1-(1.2)^{2}\right) f^{\prime}(1.2)=\cos (1.2)-2.4 \times \sin (1-1.44) f^{\prime}(1.2)=\cos (1.2)-2.4 \times \sin (-0.44) f^{\prime}(1.2)=0.3624-2.4 \times(-0.4259) f^{\prime}(1.2)=0.3624+1.0223 f^{\prime}(1.2)=1.3847 Put in formula x_{1}=1.2-\frac{-0.9727}{1.3847} x_{1}=1.2+0.7025 x_{1}=1.9025 2nd Iteration : x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} f(1.9025)=\sin (1.9025)-\cos \left[1-(1.9025)^{2}\right]-1 f(1.9025)=\sin (1.9025)-\cos [1-3.6195]-1 f(1.9025)=\sin (1.9025)-\cos (-2.6195)-1 f(1.9025)=0.9455+0.8668-1 f(1.9025) = 0.8123 f^{\prime}(1.9025)=\cos (1.9025)-2 \times 1.9025 \times \sin \left(1-(1.9025)^{2}\right) f^{\prime}(1.9025)=\cos (1.9025)-3.805 \times \sin (1-3.6195) f^{\prime}(1.9025)=\cos (1.9025)-3.805 \times \sin (-2.6195) f^{\prime}(1.9025)=-0.3257+1.8975 f^{\prime}(1.9025)=1.5718 Put in formula x_{2}=1.9025-\frac{0.8123}{1.5718} x_{2}=1.9025-0.5168 x_{2}=1.3857 Percentage relative error is -         =\left|\frac{x_{2}-x_{1}}{x_{2}}\right| \times 100         =\left|\frac{1.3857-1.9025}{1.3857}\right| \times 100         =\left|\frac{-0.5168}{1.3857}\right| \times 100         =0.3729 \times 100          = 37.29% THANKS. ...