Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Given circuitand P=110 \sin 2 t=110 \cos \left(2 t-90^{\circ}\right) \text {; Here } \omega=2 \mathrm{rad} / \mathrm{sec}in phasor P=110 \angle-90^{\circ}Convert the given circuit into phasor.Let i_{1} and is be flowing through Two loops.Thisccise Mutual Inductance is aiding. convert the given Transformer into T-Nefwork.\begin{array}{l}\text { CF } \equiv-1 / j \omega c n \\\end{array}This circuit cambe written asZeq.\begin{aligned}\text { Here zea } & =(j 3-j 1) /(j \\& =j 21 l j \\& =\frac{j 2 \times j}{j 2+j}=\frac{2}{3} j\end{aligned}voltage Across zea is Applyvoltage division rule\begin{aligned}V_{\text {zea }} & =\frac{110<-90 \times 2 / 3 j}{2 / 3 j+j 3} \\& =110<-90^{\circ} \times \frac{2 / 7}{11 / 3} \\V_{\text {zeq }} & =20<-90^{\circ} \mathrm{V}\end{aligned}Apply voltage division rule\begin{array}{l}\text { Then } V_{0}=V_{z e 9} \frac{-j 1}{-j 1+j 3}=20 \angle-90^{\circ} \times \frac{-j 1}{j \nu} \\=-10<-90^{\circ} \\V_{0}=-10 \angle-90^{\circ} \text { votts } \\\end{array}Then v_{0}(t)=-10 \cos (2 t-90)\begin{array}{l}=-10 \sin 2 t \\=10 \sin \left(2 t+180^{\circ}\right)\end{array}But answer is in cosine form\begin{aligned}\therefore V_{0}(t) & =10 \cos \left(2 t+180^{\circ}-90^{\circ}\right) \\v_{0}(t) & =10 \cos \left(2 t+90^{\circ}\right) v_{0} 1 t s\end{aligned} ...