Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

The calculations are: y x7 x8           10 59.7 2205           11 55 2096           11 65.6 1847           13 61.4 1903           10 66.1 1457           11 61 1848           10 66.1 1564           11 58 1821           4 57 2577           2 58.9 2476           7 67.5 1984           10 57.2 1917           9 58.8 1761           9 58.6 1709           6 59.2 1901           5 54.4 2288           5 49.6 2072           5 54.3 2861           6 58.7 2411           4 51.7 2289           3 61.9 2203           3 52.7 2592           4 57.8 2053           10 59.7 1979           6 54.9 2048           8 65.3 1786           2 43.8 2876           0 53.5 2560                             R² 0.548             Adjusted R² 0.511             R   0.740             Std. Error   2.432             n   28             k   2             Dep. Var. y                           ANOVA table             Source SS   df   MS F p-value     Regression 179.066 2   89.5331 15.13 4.93E-05     Residual 147.898 25   5.9159         Total 326.964 27                                             Regression output       confidence interval   variables coefficients std. error    t (df=25) p-value 95% lower 95% upper   Intercept 17.9443             x7 0.0484 0.1192 0.406 .6884 -0.1972 0.2939   x8 -0.0065 0.0018 -3.719 .0010 -0.0102 -0.0029                   Predicted values for: y                 95% Confidence Interval 95% Prediction Interval   x7 x8 Predicted lower upper lower upper Leverage 56 2,100 6.926 5.829 8.024 1.798 12.054 0.048 (a) The hypothesis being tested is: H0: β7 = β8 = 0 H1: At least one βi ≠ 0 The p-value from the output is 0.0000. Since the p-value (0.0000) is less than the significance level (0.05), we can reject the null hypothesis. Therefore, we can conclude that the regression is significant. (b) R² = 0.548 Adjusted R² = 0.511 (c) The 95% CI on β7 is between -0.1972 and 0.2939. The 95% CI when x7 = 56 and x8 = 2100is between 5.829 and 8.024. (d) The model becomes less meaningful. *********** ************* Thank you for your patience. If my answer helps you a little bit. Help me with positive ratings. So I can keep answering. It really helps me a lot. Please comment if you have any queries. I will resolve it ASAP...thumbs up kindly. It is a gesture that shows you support me. Thank you! I PLEASE DON'T DISLIKE! WE ARE JUST FOLLOWING OUR GUIDELINES. ...