For a certain interval of motion, the pin P (see figure below) is forced to move in the
fixed parabolic slot by the vertical slotted guide, which moves in the x-direction at a constant rate vx = 20 mm/s. All measurements are in millimeters and seconds. Calculate the magnitudes of the velocity v and acceleration a of pin P when x = 60 mm.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
# solution:-y=\frac{x^{2}}{160}Given, velocity in x-direction \left(V_{x}\right)=20 \mathrm{~mm} / \mathrm{s} (constant) at x=60 \mathrm{~mm}, \quad v=?, \quad a= ?\begin{aligned}\because \vec{v} & =v_{x} i+v_{y} j \\v_{x} & =20 \mathrm{~mm} / \mathrm{sec} \\v_{y} & =\frac{d y}{d t}=\frac{d}{d t}\left(\frac{x^{2}}{160}\right)=\frac{(2 x)}{160} \frac{d x}{d t} \\\because v_{x} & =\frac{d x}{d t}=20 \mathrm{~mm} / \mathrm{s}, \quad x=60 \mathrm{~mm} \\\therefore v_{y} & =\frac{(2 \times 60)}{160} \times(20) \\v_{y} & =15 \mathrm{~mm} / \mathrm{sec}\end{aligned}Therefore\begin{array}{l}\vec{v}=v_{x} i+v_{y} j \\\vec{v}=20 i+15 j\end{array}\rightarrow Mggnitude of velocity of the pin\begin{array}{l}v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{20^{2}+15^{2}} \\v=25 \mathrm{~mm} / \mathrm{s} \text { Ans. }\end{array}\longrightarrow Acceleration:-\begin{array}{l}\vec{a}=a_{x} i+a_{y} j \\a_{x}=\frac{d v_{x}}{d t}, \because v_{x}=20 \mathrm{~mm} / \mathrm{s} \text { (constant) } \\\therefore a_{x}=0 \\a_{y}=\frac{d v_{y}}{d t} \\\because v_{y}=\frac{d y}{d t}=\frac{2 x}{160} \times\left(\frac{d x}{d t}\right)=\frac{2 \times x \times 20}{160} \\v_{y}=\frac{d y}{d t}=\frac{x}{4} \\\text { OR } \\a_{y}=\frac{d v_{y}}{d t}=\frac{d^{2} y}{d t}=\frac{1}{4} \times \frac{d x}{d t} \\a_{y}=\frac{1}{4} \times 20 \mathrm{~mm} / \mathrm{sec} \\a_{y}=5 \mathrm{~mm} / \mathrm{s}^{2} \\\therefore \quad a^{2}=0 i+5 j\end{array}Therefore nagnitude of accelerationa=5 \mathrm{~mm} / \mathrm{s}^{2} \text { Ans. } ...