Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
(1)A=\left[\begin{array}{cc}4 & -3 \\8 & -6\end{array}\right](i) Finding eigen values of A.\begin{array}{l}{[A-\lambda I]=0} \\{\left[\begin{array}{cc}4 & -3 \\8 & -6\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\0 & \lambda\end{array}\right]=0} \\{\left[\begin{array}{cc}4-\lambda & -3 \\8 & -6-\lambda\end{array}\right]=0 .} \\(4-\lambda)(-6-\lambda)-(-3) 8=0 \\-24-4 \lambda+6 \lambda+\lambda^{2}+24=0 \\\lambda 2+2 \lambda=0 \\\lambda(\lambda+2)=0 \Rightarrow \lambda=0,-2 .\end{array}\therefore eigen values are \lambda_{1} \& \lambda_{2} are 0,-2.(ii) cigen basis of \stackrel{\underline{=}}{=} :before eigen base we need to find eigen-Vectors of \lambda.eigen rector for \lambda=0.\begin{array}{l}{[A-\lambda I]=0} \\{\left[\begin{array}{ll}4 & -3 \\8 & -6\end{array}\right]\left[\begin{array}{l}u_{1} \\u_{2}\end{array}\right]=0 .}\end{array}we need to reduced in echlon formR_{1}: R_{1} \rightarrow \frac{R_{1}}{4} ; R_{2}: R_{2}-8 R_{1} \text {. }\begin{array}{c}{\left[\begin{array}{cc}1 & -\frac{3}{4} \\0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\0\end{array}\right]} \\x_{1}-\frac{3}{4} x_{2}=0 \\x_{1}=\frac{3}{4} x_{2}\end{array}let x_{2}=t, x_{1}=\frac{3}{4} t\text { 荃 }\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=\left[\begin{array}{c}\frac{3}{4} t \\t\end{array}\right]=\left[\begin{array}{l}\frac{3}{4} \\1\end{array}\right] t\stackrel{1}{\text { eigen veetor for }} \lambda=0.\begin{array}{l}{[A-\lambda I][x]=0} \\{\left[\begin{array}{cc}6-4 & -3 \\8 & -6-(-2)\end{array}\right]\left[\begin{array}{l}u_{1} \\u_{2}\end{array}\right]=0}\end{array}R: \quad R_{1} \rightarrow \frac{R_{1}}{6} ; R_{2}: R_{2}-8 R_{1}\begin{array}{l}{\left[\begin{array}{cc}1 & -1 / 2 \\0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2}\end{array}\right]=0} \\{\left[\begin{array}{l}u_{1} \\u_{2}\end{array}\right]=\left[\begin{array}{c}1 / 2 \\1\end{array}\right] t .}\end{array}Now These eigen vectors are Arranged into a new matriu called eigen base.=\left[\begin{array}{cc}\frac{3}{4} & 1 / 2 \\1 & 1\end{array}\right](2)A=\left[\begin{array}{ccc}1 & -1 & 0 \\1 & 2 & 1 \\-2 & 1 & -1\end{array}\right](i) eigon values of : :\begin{array}{l}{[A-\lambda J]=0} \\{\left[\begin{array}{ccc}1-\lambda & -1 & 0 \\1 & 2-\lambda & 1 \\-2 & 1 & -1-\lambda\end{array}\right]=0} \\\Rightarrow(1-\lambda)[(2-\lambda)(-1-\lambda)-1]-(-1)[(-1-\lambda) 1-(-2)]+0=0 \\\Rightarrow(1-\lambda)\left[-2-2 \lambda+\lambda+\lambda^{2}-1\right]+1[-1-\lambda+2]=0 \\\Rightarrow-\lambda^{3}+2 \lambda^{2}+\lambda-2=0 \text {. } \\\end{array}we get \lambda_{1}=2, \lambda_{2}=1, \lambda_{3}=-1.\therefore eigen values are 2,1,-1.(ii) eigen basis of A:Befor that we need to caluclate eigen rectors for eigen values.for \lambda=2\left[\begin{array}{ccc}1-\lambda & -1 & 0 \\1 & 2-\lambda & 1 \\-2 & 1 & -\lambda-1\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 0 \\1 & 0 & 1 \\-2 & 1 & -3\end{array}\right]\left[\begin{array}{l}u_{1} \\u_{2} \\u_{3}\end{array}\right]=0we need to convert it into row echlon form\begin{array}{l}R_{1}: R_{1} \longrightarrow R_{1} \cdot(-1) \\\text { [ multiply row } 1 \text { by -1] } \\R_{2}: R_{2} \rightarrow R_{2}-R_{1} \\\end{array}\begin{array}{l}{\left[\begin{array}{ccc}1 & 1 & 0 \\0 & -1 & 1 \\0 & 3 & -3\end{array}\right]} \\R_{2} \longrightarrow-R_{2} \quad\left[\text { multiply row } 2 b_{y}-1\right] \\R_{1} \longrightarrow R_{1}-R_{2} \\{\left[\begin{array}{ccc}1 & 0 & 1 \\0 & 1 & -1 \\0 & 3 & -3\end{array}\right]} \\R_{3}=R_{3}-3 R_{2} \\{\left[\begin{array}{ccc}1 & 0 & 1 \\0 & 1 & -1 \\0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\u_{3}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]} \\x_{1}+x_{3}=0 ; \quad x_{2}=x_{3} \\x_{3}=-x_{1} \\\end{array}iet, x_{3}=tfor \lambda=1\left[\begin{array}{l}u_{1} \\u_{2} \\u_{3}\end{array}\right]=\left[\begin{array}{c}-t \\t \\t\end{array}\right]=\left[\begin{array}{c}-1 \\1 \\1\end{array}\right] t\begin{array}{l}{\left[\begin{array}{ccc}1-1 & -1 & 0 \\1 & 2-1 & 1 \\-2 & 1 & -1-1\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]} \\{\left[\begin{array}{ccc}0 & -1 & 0 \\1 & 1 & 1 \\-2 & 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]}\end{array}R_{1}=R_{1} \leftrightarrow R_{2} \quad [Row 2 \& 1 are interchanging]R_{3}=R_{3}+2 R_{1}\begin{array}{l}{\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 3 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=[0]} \\ R_{2}=-R_{2} \quad\left[\text { multiply Row } 2 b_{y}-1\right] \\ R_{1}=R_{1}-R_{2} \\ {\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 3 & 0\end{array}\right]} \\ R_{3}=R_{3}-3 R_{2} \\ {\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]} \\ u_{2}=0 \quad x_{1}+u_{3}=0 \\ x_{1}=-x_{3} \\ {\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{c}-t \\ 0 \\ t\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] t} \\ \lambda=-1:- \\ {\left[\begin{array}{ccc}1-(-1) & -1 & 0 \\ 1 & 2-(-1) & 1 \\ -2 & 1 & -(x-1)-1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]} \\ {\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 3 & 1 \\ -2 & 1 & 0\end{array}\right]\left[\begin{array}{l}u_{1} \\ x_{2} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]} \\ R_{1}=R_{1} / 2 \\ R_{2}=R_{2}-R_{1} \\\end{array}\begin{array}{l}{\left[\begin{array}{ccc}1 & -1 / 2 & 0 \\0 & 7 / 2 & 1 \\-2 & 1 & 0\end{array}\right]} \\R_{3}=R_{3}+2 R_{1} \\R_{2}=2 R_{2} / 7 \\{\left[\begin{array}{ccc}1 & -1 / 2 & 0 \\0 & 1 & 2 / 7 \\0 & 0 & 0\end{array}\right]} \\R_{1}=R_{1}+\frac{R_{2}}{2} \\{\left[\begin{array}{lcc}1 & 0 & 1 / 7 \\0 & 1 & 2 / 7 \\0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\u_{3}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]} \\u_{1}+u_{3} / 7=0 \\\text { let, } x_{3}=t . \quad x_{2}+\frac{2 u_{3}}{7}=0 \\{\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{c}-\frac{t}{7} \\-\frac{2 t}{7} \\t\end{array}\right]=\left[\begin{array}{c}-1 / 7 \\-2 / 7 \\1\end{array}\right] t} \\\end{array}(3) IN Case if you have any doubt feel free to comment Pls support my answer with a like ...