For each of the periodic signals shown in Fig. P6.1-1, find the
compact trigonometric Fourier series and sketch the amplitude and
phase spectra. If either the sine or cosine terms are absent in the
Fourier series, explain why.
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
a) T_{0}=4, \omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{4}=\frac{\pi}{2}Because of quen symmetry, all the sine terms are zero.\begin{array}{l}f(t)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi}{2} t\right)+b_{n} \sin \left(\frac{n \pi}{2} t\right)\right] \\a_{0}=0 \quad\left(b_{y}\right. \text { inspection) } \\a_{n}=\frac{4}{4}\left[\int_{0}^{1} \cos \left(\frac{n \pi}{2} t\right) d t-\int_{1}^{2} \cos \left(\frac{n \pi}{2} t\right) d t\right]=\frac{4}{n \pi} \sin \frac{n \pi}{2}\end{array}Theredore the Fourier series for f(t) isf(t)=\frac{4}{\pi}\left(\cos \frac{\pi t}{2}-\frac{1}{3} \cos \frac{3 \pi t}{2}+\frac{1}{5} \cos \frac{5 \pi t}{2}-\frac{1}{7} \cos \frac{\pi \pi t}{2}+\cdots\right)Here b_{n}=0, and we allaw c_{n} to take negative values, The figure below shows the plat for C_{n}b) T_{\theta}=10 \pi, \omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{10 \pi}=\frac{1}{5}Because of quen symmetry, all the sine tesms are zero.\begin{array}{l}f(t)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n}{5}\right) t+b_{n} \sin \left(\frac{n}{5} t\right)\right] \\a_{0}=\frac{1}{5}\left(b_{y} \text { inspection }\right) \\a_{n}=\frac{2}{10 \pi} \int_{-\pi}^{\pi} \cos \left(\frac{n}{5}\right) t d t=\frac{1}{5 \pi} \times\left.\left(\frac{5}{n}\right) \sin \left(\frac{n}{5}\right) t\right|_{t=-\pi} ^{\pi}=\frac{2}{\pi n} \sin \left(\frac{n \pi}{5}\right)\end{array}b_{n}=\frac{2}{10 \pi} \int_{-\pi}^{\pi} \sin \left(\frac{n}{5} t\right) d t=0 (integrand is an odd function of t ) Hese b_{n}=0, and we allow C_{n} to take neqative values. Note that c_{n}=a_{n} for n=0,1,2,3 \cdots fiquse below staws the ampletude plet of C_{n} and phase spectrum is zero.c)\begin{array}{l}T_{0}=2 \pi \Rightarrow \omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{2 \pi}=1 \\f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t+b_{n} \sin n t\end{array}with a_{0}=0.5 (by inspection)\begin{array}{l} a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{t}{2 \pi} \cos n t d t=0, b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{t}{2 \pi} \sin n t d t=-\frac{1}{\pi n} \\\text { and } f(t)=0.5-\frac{1}{\pi}\left(\sin t+\frac{1}{2} \sin 2 t+\frac{1}{3} \sin 3 t+\frac{1}{4} \sin 4 t+\cdots\right) \\=0.5+\frac{1}{\pi}\left[\cos \left(t+\frac{\pi}{2}\right)+\frac{1}{2} \cos \left(2 t+\frac{\pi}{2}\right)+\frac{1}{3} \cos \left(3 t+\frac{\pi}{2}\right)+\cdots \cdot\right]\end{array}The reason for vanishing of the cosine terms is that when 0.5 (the d c component) is substracted from f(t), the remaining function has add symmetry. Hence, the Fovrier sezies wowld contain d c and sine terms only. Fiqure above shows the plot for c_{n} and \theta_{n}d) T_{0}=\pi, \omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{\pi}=2 and f(t)=\frac{4}{\pi} tBy inspection a_{0}=0Because of odd symmetry a_{n}=0 \quad(n>0)Hence, the Forrier seyies wovld contain sine terms only.\begin{aligned}b_{n} & =\frac{4}{\pi} \int_{0}^{\pi / 4} \frac{4}{\pi} t \sin 2 n t d t=\frac{2}{\pi n}\left(\frac{2}{\pi n} \sin \frac{\pi n}{2}-\cos \frac{\pi n}{2}\right) \\\Rightarrow f(t) & =\frac{4}{\pi^{2}} \sin 2 t+\frac{1}{\pi} \sin 4 t-\frac{4}{9 \pi^{2}} \sin 6 t-\frac{1}{2 \pi} \sin 8 t+\cdots \\& =\frac{4}{\pi^{2}} \cos \left(2 t-\frac{\pi}{2}\right)+\frac{1}{\pi} \cos \left(4 t-\frac{\pi}{2}\right)+\frac{4}{9 \pi^{2}} \cos \left(6 t+\frac{\pi}{2}\right)+\frac{1}{2 \pi} \cos \left(8 t+\frac{\pi}{2}\right)+\cdots\end{aligned}The plot for C_{n} and \theta_{n} is shown as follows.e)\begin{array}{l}T_{0}=3, \omega_{0}=\frac{2 \pi}{T_{0}}=\frac{2 \pi}{3} \\a_{0}=\frac{1}{3} \int_{0}^{1} t d t=\frac{1}{6} \\a_{n}=\frac{2}{3} \int_{0}^{1} t \cos \frac{2 \pi \pi}{3} t d t=\frac{3}{2 \pi^{2} n^{2}}\left[\cos \frac{2 \pi n}{3}+\frac{2 \pi n}{3} \sin \frac{2 \pi n}{3}-1\right] \\b_{n}=\frac{2}{3} \int_{0}^{1} t \sin \frac{2 \pi \pi}{3} t d t=\frac{3}{2 \pi^{2} n^{2}}\left[\sin \frac{2 \pi n}{3}-\frac{2 \pi n}{3} \cos \frac{2 \pi n}{3}\right]\end{array}Therefore C_{0}=\frac{1}{6}, C_{n}=\frac{3}{2 \pi^{2} n^{2}}\left[\sqrt{2+\frac{4 \pi^{2} n^{2}}{9}-2 \cos \frac{2 \pi n}{3}-\frac{4 \pi n}{3} \sin \frac{2 \pi n}{3}}\right] and \theta_{n}=\tan ^{-1}\left(\frac{\frac{2 \pi n}{3} \cos \frac{2 \pi n}{3}-\sin \frac{2 \pi n}{3}}{\cos \frac{2 \pi n}{3}+\frac{2 \pi n}{3} \sin \frac{2 \pi n}{3}-1}\right)T_{0}=6, w_{0}=\pi / 3, a_{0}=0.5 (by inspection) Even symmetry; b_{n}=0\begin{aligned}a_{n} & =\frac{4}{6} \int_{0}^{3} f(t) \cos \frac{n \pi}{3} d t=\frac{2}{3}\left[\int_{0}^{1} \cos \frac{n \pi}{3} d t+\int_{1}^{2}(2-t) \cos \left(\frac{n \pi}{3}\right) t d t\right] \\& =\frac{6}{\pi^{2} \pi^{2}}\left[\cos \frac{n \pi}{3}-\cos \frac{2 n \pi}{3}\right] \\f(t) & =0.5+\frac{6}{\pi^{2}}\left(\cos \frac{\pi}{3} t-\frac{2}{9} \cos \pi t+\frac{1}{25} \cos \frac{5 \pi}{3} t+\frac{1}{49} \cos \frac{7 \pi}{3} t+\cdots\right)\end{aligned}obsesve that even harmonics vanish. The reason is that if the d c(0.5) is substracted from f(t), the resulting function has half-wave symmetry. Figure shows the plot for Cn ...