Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
soludion:distance of x from poin A as follows:\begin{array}{l}\frac{g}{x}=\frac{w_{0}}{2} \\9=\frac{w_{0}}{2} x\end{array}distance x from point A for the sedelion A B :\begin{aligned}V_{A B} & =-\frac{1}{2} x \times q \\& \frac{W_{0}}{2} x \text { for } q . \\V_{A B} & =-\frac{1}{2} x \times \frac{W_{0}}{L} x=-\frac{W_{0}}{2 L} x^{2}\end{aligned}distance x from peint A for the scction A :m_{A D}=-\frac{w_{0}}{2 L} x^{2} \times \frac{x}{3}=-\frac{w_{0}}{6 L} x^{3}elastic curve for the section A B as follows: EI \frac{d^{2} v}{d x^{2}}=M_{A B}\begin{aligned}& -W_{0} x^{3} \text { for } m_{A B} . \\E L \frac{d^{2} v}{d x^{2}} & =-\frac{w_{0} x^{3}}{6 L}\end{aligned}E I \frac{d v}{d x}=\left(\frac{w_{0} x^{4}}{24 L}\right)+C_{1}Obtain the deflection equation:\text { EIV }=-\left(\frac{w_{0} x^{5}}{220 L}\right)+c_{1} x+c_{2} \text {. }At x=L, \frac{d v}{d x}=0these values in equation\begin{array}{l}\text { El } \frac{d V}{d x}=\frac{w_{0} x^{4}}{24 L}+c_{1} \\E I(0)=-\frac{w_{0}(L)^{4}}{24 L}+c_{1}=c_{1}=\frac{w_{0}(L)^{3}}{24}\end{array}At V=0 at x=L :V, L for x and \frac{W_{0}(L)^{3}}{24} for clin equation\begin{array}{l}E I V=-\left(\begin{array}{l}w_{0} x^{5} \\120 L\end{array}\right)+c_{1} x+c_{2} \\E I(0)=-\left(\frac{w_{0}\left(L^{5}\right)}{120 L}\right)+\left(\frac{w_{0}\left(l^{3}\right.}{24}\right)(l)+c_{2} \\C_{2}=\frac{w_{0} L^{4}}{120}-\frac{w_{0} L^{4}}{24}--\frac{w_{0} L^{4}}{30}\end{array}\frac{W_{0}(L)^{3}}{24} for c_{1} and -\frac{W_{0} L^{4}}{30} for c_{1} inV=-\frac{W_{0}}{\text { T2OLEI }}\left[x^{5}-5 L^{4} x+4 L^{5}\right]Therefar, the required equation of the elartic curve for the section A B is \left.-\frac{w_{0}}{120 L E I}\left[x^{2}-5 L\right)^{2} c+4 L\right]of for x in the elastic crrve equation.\begin{aligned}V_{A} & =-\frac{W_{0}}{120 L E I}\left[(0)^{5}-5 L^{4}(0)+4 L^{5}\right] \\& =-\frac{W_{0} L^{4}}{30 E I}\end{aligned}The given beam at point A using equation\text { EI } \frac{d v}{d x}=-\frac{w_{0} x^{4}}{24 L}+c_{1}\frac{W_{0}(L)^{3}}{24} for C_{1} and 0 for x i.\left(\frac{d v}{d x}\right)_{A}=-\frac{W_{0}(0)^{4}}{24 L E I}+\frac{W_{0} L^{3}}{24 L E I}=\frac{W_{0} L^{3}}{24 E I} ...