I HAVE 10 MINS REMAINING, PLEASE GIVE ME AN ANSWER
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
\therefore \quad \begin{array}{l} \Sigma F_{y}=0 \\R_{B}+R_{C}=12303 \mathrm{lb} . \\m_{B}=0 \\\Rightarrow(2044 \times 2)+\left(R_{e} \times 6\right)= \\(8215) \times 3+(2044)(8) \\R_{C}=615.1 .5 \mathrm{lb} . \\R_{B}=6151.5 \mathrm{lb} .\end{array}\left(R_{B}\right)_{x}=0 \rightarrow \text { as } \sum F_{x}=0\left(R_{B},=R_{B}+(\text { Let })\right.\therefore Berding moment (m) at 1.17 feet to Right of B.\therefore m=717.775 \times 12 \mathrm{lb}-\stackrel{0}{0}\& m=717.775 l b-j t \text {. }\therefore we know Berding skess (\sigma)=\frac{m y}{I}\bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}}\begin{array}{l}A_{1}=1.1 \times 3.69=4.059 \mathrm{lb}^{2} . \\A_{2}=1.16 \times 9.09=9.3844 \quad 1 b^{2} .\end{array}From boitom y_{1}=\frac{111}{2}=0.5516.\bar{y}=\frac{(4.059)(0.55)+(9.3844)(5.145)}{(4.059)+(9.3844} \quad y_{2}=\left(\frac{8.09}{2}+1.1\right)=5.145 \mathrm{lb}(4.059)+(9.3844 \begin{array}{l}\bar{y}=3.75762 \mathrm{lb} \text {. } \\ I_{1}=\frac{b h^{3}}{12}=\frac{3.69 \times 1.1^{3}}{12}=0.4093 \mathrm{lb}^{4} \\ I_{2}=\frac{\omega \times L^{3}}{12}=\frac{1.16 \times 8.09^{3}}{12}=51.1826 \mathrm{lb}^{4} . \\ I=\left(I_{1}\right)_{N A}+\left(I_{2}\right)_{N A} . \\ \left(I_{1}\right)_{\mathrm{NA}}=\left(I_{1}\right)+A_{1}(3.75762-0.55)^{2 .}=42.171645 \\ \left(I_{2}\right)_{N A}=\left(I_{2}\right)+A_{2}(3.75762-5.145)^{2}=69.2459 \mathrm{l} \\ I=111.417545 \mathrm{lb}^{4} \\ \Rightarrow \quad \sigma=\frac{(717.775 \times 12) \times(3.75762)}{111.417545} \\ \sigma=290.488 \frac{\mathrm{lb}}{i^{2}} \\ \Rightarrow \sigma=290 \cdot 49 \frac{1 b}{e_{n}^{2}} \\\end{array} ...