I HAVE 10 MINS REMAINING, PLEASE GIVE ME AN ANSWER

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

\therefore \quad \begin{array}{l} \Sigma F_{y}=0 \\R_{B}+R_{C}=12303 \mathrm{lb} . \\m_{B}=0 \\\Rightarrow(2044 \times 2)+\left(R_{e} \times 6\right)= \\(8215) \times 3+(2044)(8) \\R_{C}=615.1 .5 \mathrm{lb} . \\R_{B}=6151.5 \mathrm{lb} .\end{array}\left(R_{B}\right)_{x}=0 \rightarrow \text { as } \sum F_{x}=0\left(R_{B},=R_{B}+(\text { Let })\right.\therefore Berding moment (m) at 1.17 feet to Right of B.\therefore m=717.775 \times 12 \mathrm{lb}-\stackrel{0}{0}\& m=717.775 l b-j t \text {. }\therefore we know Berding skess (\sigma)=\frac{m y}{I}\bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}}\begin{array}{l}A_{1}=1.1 \times 3.69=4.059 \mathrm{lb}^{2} . \\A_{2}=1.16 \times 9.09=9.3844 \quad 1 b^{2} .\end{array}From boitom y_{1}=\frac{111}{2}=0.5516.\bar{y}=\frac{(4.059)(0.55)+(9.3844)(5.145)}{(4.059)+(9.3844} \quad y_{2}=\left(\frac{8.09}{2}+1.1\right)=5.145 \mathrm{lb}(4.059)+(9.3844 \begin{array}{l}\bar{y}=3.75762 \mathrm{lb} \text {. } \\ I_{1}=\frac{b h^{3}}{12}=\frac{3.69 \times 1.1^{3}}{12}=0.4093 \mathrm{lb}^{4} \\ I_{2}=\frac{\omega \times L^{3}}{12}=\frac{1.16 \times 8.09^{3}}{12}=51.1826 \mathrm{lb}^{4} . \\ I=\left(I_{1}\right)_{N A}+\left(I_{2}\right)_{N A} . \\ \left(I_{1}\right)_{\mathrm{NA}}=\left(I_{1}\right)+A_{1}(3.75762-0.55)^{2 .}=42.171645 \\ \left(I_{2}\right)_{N A}=\left(I_{2}\right)+A_{2}(3.75762-5.145)^{2}=69.2459 \mathrm{l} \\ I=111.417545 \mathrm{lb}^{4} \\ \Rightarrow \quad \sigma=\frac{(717.775 \times 12) \times(3.75762)}{111.417545} \\ \sigma=290.488 \frac{\mathrm{lb}}{i^{2}} \\ \Rightarrow \sigma=290 \cdot 49 \frac{1 b}{e_{n}^{2}} \\\end{array} ...