Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
solutiou!As per molnent Area theorem 1ir The diffreve of clopes between the any two paints is Egvalto the area of \left(\frac{m}{E R}\right. )diggram between the two painta."So first we will draw Bendingmoment (m) Diagram. For simplicity of calculation, I will draw berdirg moment diagram separately for forces 1 \mathrm{KM} and 2 \mathrm{kM} / \mathrm{m} and then apply method of superposition to add them.Calculatior.Bendizg morent at A Due to 1 \mathrm{KH} load =1 \times 0=0Bending momert at C Due to 1 \mathrm{kH} loud =1 \times(\cdot 4+6)=1 \mathrm{kN}-\mathrm{m}Berding momertat B due to 2ktrm lund =0Bending moment ot C due to 21 \mathrm{~km} / \mathrm{m} land =2 \times 0.6 \times \frac{0.6}{2}=0.36 \mathrm{krm}Nou Add the Area of \frac{m}{E I} Diagram Dre to loud 1 \mathrm{KM} and 2 \mathrm{~km} / \mathrm{m}.Herle combined Area of \frac{m}{E I} Diagram, as per principle of Superposition,\begin{array}{l}A=\frac{1}{2} \times \frac{1}{E I} \times 1+0.6 \times \frac{0.36}{\varepsilon I} \times \frac{1}{3} \\\Rightarrow A=\frac{0.572}{E I} \\\end{array}But As per moment area theorem 1, we know that this area A is Equal to Diftrerce of slobe between paints A and C.\Rightarrow \quad \theta_{A}-\theta_{C}=A=\frac{0.572}{E I}But Q_{C}=0 because at fined हnd C Ho Rotation will take Place.\begin{array}{l}\Rightarrow \quad \theta_{A}=\frac{0.572}{E I} \\E=200 \mathrm{GPp}=200 \times 10^{3} \mathrm{mPa} \\I=6.3617 \times 10^{-7} \mathrm{m4} \\=6.3617 \times 10^{-7} \times 10^{12} \mathrm{~mm} 4 \\\Rightarrow Q_{A}=\frac{0.572 \times 106 \times 10^{3}\left(\mathrm{M}-\mathrm{mm}^{2}\right)}{200 \times 10^{3} \times 6.3617 \times 10^{5}\left(\mathrm{M}-\mathrm{mm}^{2}\right)} \\=6.3617 \times 10^{5} \mathrm{~mm} 4 \\\Rightarrow Q A=4.4956 \times 10^{-3} \mathrm{rad} \\\end{array}\begin{aligned}Q_{A} & =4.4956 \times 10^{-3} \times \frac{180}{\pi} \text { degree } \\\Rightarrow Q_{A} & =0.2576 \text { degree }\end{aligned}Ans ...