Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Q.1)Dording moments.(i) A+A:-D \cdot M_{A}=0(ii)\begin{aligned}A+B:-B \cdot M D & =-1 \times 0.40 \\& =-0.40 \mathrm{kNm} .\end{aligned}(iii)\begin{aligned}\text { At C:- } \nabla \cdot M_{C} & =-1 \times 1.0-2 \times \frac{0.60^{2}}{2} \\B \cdot M_{C} & =-1.36 \mathrm{kNm}(A) .\end{aligned}Finding Areas & controids.(i) For are bitwer D and C.Toking a section x-x at o distara x from point C in sigmont BC and cakulating momont about tho pection in toims of x\begin{array}{l}M_{x}=2 \cdot 2 x-1.76-\frac{2 x^{2}}{2}=2.2 x-1.76-x^{2} \quad(0-0.60) \\\text { Ared }\left(A_{1}\right):-\int_{0}^{L} \frac{M x}{E I} d x=\frac{1}{E I}\left[\int_{0}^{0.6}\left(2.2 x-1.76-x^{2}\right) d x\right] \\A_{1}=-\frac{0.492}{E I}\end{array}\begin{aligned}\text { Certroid }\left(C_{1}\right) & =\int_{0}^{L} \frac{M \cdot x}{E I} d x \\& =\frac{1}{E I}\left[\int_{0}^{0}\left(2.2 x^{2}-1 . J 6 x-x^{J}\right) d x\right] \\& =0.241 \mathrm{~m} \text { from } C \\& =0.759 \mathrm{~m} \text { jrom } \mathrm{A}\end{aligned}For area betwier A and D\text { Are }\left(A_{2}\right)=-\frac{1}{2} \times \frac{0.40}{E I} \times 0.40=\frac{-0.08}{E_{I}}Controid \left(C_{2}\right)=\frac{2}{\nabla} \times 0.40=0.267 \mathrm{~m} from \mathrm{A}Uring principle of moment areo method,\begin{array}{l}t_{A C}=f_{A}=\text { momont of } \frac{M}{E I} \text { diagrom about } A \\f_{A}=\frac{-4.492}{E I} \times 0.759-\frac{0.08}{E I} \times 0.267 \\f_{A}=-\frac{0.795}{E I}(t)=\frac{0.795}{200 \times 10^{6} \times 6.7617 \times 10^{-7}} \\=3.104 \mathrm{~mm}(\$) \\\end{array}Deflection at frec end:- \delta_{A}=0.104 \mathrm{~mm}(b) ...