For the high-pass filter op-amp circuit below,
if *R*_{1} = 25
kΩ, *R*_{2} = 200 kΩ, and *C* =
160 µF, determine the nominal voltage gain of the filter at very
high frequencies within the passband,
in V/V.

Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

By \mathrm{KCL} @ 0 \mathrm{D}\begin{array}{l}\frac{0-v_{1}}{R_{1}+1 / s c}+\frac{0-v_{0}}{R_{2}}=0 \\-\frac{S C V_{1}}{R_{1} S c+1}-\frac{V_{0}}{R_{2}}=0 \\-S C R_{2} v_{1}-v_{0} R_{1} s C-v_{0}=0 \\V_{0}\left(1+R_{1} S C\right)=-S C R_{2} V_{1} \\\frac{v_{0}}{v_{1}}=-\frac{S R_{2} C}{1+R_{1} S C} \\{\left[A_{v}(S)=-\frac{S R_{2} C}{S R_{1} C+1}\right]} \\A(s)=-\frac{S 200 \times 10^{3} \times 160 \times 10^{-6}}{s\left(25 \times 10^{3} \times 160 \times 10^{-6}\right)+1} \\{\left[A_{0}(s)=-\frac{32 s}{4 s+1}\right]} \\\end{array} ...