Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
From the figure,in \triangle A B C,\begin{aligned}& A B=500 \mathrm{~mm}, \quad B C=30 \mathrm{~mm}, \\\therefore & \tan \beta=\frac{B C}{A B}=\frac{30 \mathrm{~mm}}{500 \mathrm{~mm}}, \\& \beta=\tan ^{-1}\left(\frac{30}{500}\right) \Rightarrow \beta=3.434^{\circ} \text { or } 0.0599 \mathrm{rad}\end{aligned}Let the eccentricily of load (500kN/m) be ee-m,\therefore The value of Moment due to eccentricity of 500 \mathrm{uN} / \mathrm{m} should be equell to 50 \mathrm{uN} \cdot \mathrm{m} / \mathrm{m},ie', 500 \mathrm{uN} / \mathrm{m} \times e-m=50 \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}.: e=\frac{1}{10} \mathrm{~m} \quad \Rightarrow e=10 \mathrm{~cm} 3(i) Indination ( \beta )Let the resultant force due to 50 \mathrm{uN} / \mathrm{m} and 600 \mathrm{kN} / \mathrm{m} lee R,The value of R is as, R=\sqrt{600^{2}+50^{2}}=602.0797 \mathrm{ln} / \mathrm{m}The angle of un clination (\beta) of R is as,\begin{array}{l}\therefore \cos \beta=\frac{600 \mathrm{uN} / \mathrm{m}}{R}=\frac{600}{602.0797} \\\because \beta=4.764^{\circ} \text { or } 0.0831 \text { rad }\end{array}(ii) Eccentricily (e): The eccentricity (e):The moment due is eccentricitg (e) of lond 600 \mathrm{kN} / \mathrm{m} is equal to 804 \mathrm{~N} \mathrm{~m} / \mathrm{m},\begin{array}{l}: 600 \mathrm{wN} / \mathrm{m} \times e-\mathrm{m}=80 \mathrm{uN} \mathrm{m} / \mathrm{m} . \\: e=0.133 \mathrm{~m} \text { or } 13.3 \mathrm{~cm}\end{array} ...