Requirement a)p = Annual Payment = 50,000n = 8 yearsr = 12% = 0.12Present Value ofAnnuity Due := p**[(1-((1)/((1+r)^(n))))/(r)]**(1+r)= 50000**[(1-((1)/((1+0.12)^(8))))/(0.12)]**(1+0.12)= 50000**[(1-((1)/((1.12)^(8))))/(0.12)]**(1.12)= 50000**[(1-0.403883)/(0.12)]**(1.12)= 50000**4.96764**1.12= $278,187.84Requirement b)Payments:P1 = 30,000P2 = 40,000P3 = 50,000P4 = 60,000P5 = 60,000P6 = 60,000P7 = 60,000P8 = 60,000Present Value ofunequal payments:=(P0)/((1+r)^(0))+dots.+(Pn)/((1+r)^(n))= (30000)/((1.12)^(0))+(40000)/((1.12)^(1))+(50000)/((1.12)^(2))+(60000)/((1.12)^(3))+(60000)/((1.12)^(4))+(60000)/((1.12)^(5) ... See the full answer