Get the value of lim┬((x,y)→(0,0))〖xy/√(x^2+y^2 )〗
Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Step 1This is the problem based on multivariate calculus. To find the limit , we can convert given function to the polar from and then we further simplify to find the limit value.Step 2Solufin =\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}convert to Polar worrinates\begin{array}{l}x=r \cos \theta, y=r \sin \theta \\\lim _{r \rightarrow 0} \frac{r \cos (\theta) \cdot r \sin (\theta)}{\sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta}}=\lim _{r \rightarrow 0} \frac{r \cos \theta \cdot r \sin \theta}{r} \\\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right) \\=\lim _{\gamma \rightarrow 0} \gamma \cos \theta \sin \theta=\cos \theta \sin \theta \lim _{\gamma \rightarrow 0} \gamma \\=\cos \theta \times \sin \theta \times 0 \\=0 \\\end{array} ...