Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
Ans:-\frac{5 x^{2}+2}{\left(x^{2}-24 x+144\right)\left(x^{2}+3 x+4\right)}first we do factoring the denominator ento limar 5 x^{2}+2 Quadratic factors(x-12)^{2}\left(x^{2}+3 x+4\right)Step-2Now denominator hos (x-12)^{2} repeated linerr factor So This hes Partial fraction (sum of pouer tems) i.e.\frac{A}{x-12}+\frac{B}{(x-12)^{2}}Step-3 if denomehator hes qualratic form or x^{2}+3 x+4 tems then sum of Partial fractions includer a \operatorname{dem}\frac{C x+D}{x^{2}+3 x+4}Hence Partial Sraction is=\frac{5 x^{2}+2}{\left(x^{2}-2 x+144\right)\left(x^{2}+3 x+4\right)}=\frac{A}{x-12}+\frac{B}{(x-12)^{2}}+\frac{(x+D}{x^{2}+3 x+4}Note here we can not do limar fuctor of x^{2}+3 x+4 So we will use directiy as a non reducible factor, ...