Community Answer

Honor CodeSolved 1 Answer

See More Answers for FREE

Enhance your learning with StudyX

Receive support from our dedicated community users and experts

See up to 20 answers per week for free

Experience reliable customer service

Get Started

a) z_{11} :whe know, v_{1}=z_{11} I_{1}+Z_{12} I_{2}\Rightarrow \quad Z_{11}=v_{1} /\left.I_{1}\right|_{I_{2}=0}I_{2}=0 implies, V_{2} port is open circuited.\Rightarrow v_{1}=I_{1} \text { (Req) }where, Req =51145=\frac{15 \times 45}{15+45}=\frac{15 \times 45}{60}=11.25\therefore y_{11}=\frac{v_{1}}{I_{1}}=11.25 \mathrm{\Omega}y_{11}=11.25 \Omegaz_{22}:-since, v_{2}=z_{22} I_{2}+z_{21} I_{1}\Rightarrow z_{22}=V_{2} /\left.I_{2}\right|_{I_{1}=0 \text {. }}Now, open circuit V_{1} port and find the equivalent Mesistance hogen v_{2} port,ie. z_{22}=\operatorname{Req}=\frac{V_{2}}{I_{2}}\begin{array}{l}\text { Now, Req }=[301160+20] 1140 u=\left[\frac{30 \times 60}{90}+20\right] 1140 \\=401140 \\=\frac{40 \times 40}{40+40}=20 \\\therefore \frac{V_{2}}{I_{2}}=20 n=Z_{22} \\\Rightarrow y_{22}=20 r \\\end{array}c) 4_{11} i-we kerow, I_{1}=y_{11} v_{1}+y_{12} v_{2}\Rightarrow y_{11}=I_{1}\left|v_{1}\right|_{v_{2}=0}ie., short circuit ortput port and find input conductance. circuit is:-where, y_{11}=1 / Reor.\begin{aligned}R_{\text {eq }}=1511(15+601 / 20) & =15 / 1\left(15+\frac{60 \times 20}{60+20}\right) \\=15(1(15+15) & =151 / 30 \\& =\frac{15 \times 30}{15+30}=10 \\\therefore R_{\text {q }} & =10 \Omega\end{aligned}\begin{aligned}\Rightarrow \quad y_{11} & =\frac{1}{R_{0 V}}=\frac{I_{1}}{v_{1}}=\frac{1}{10} \\& \therefore y_{11}=0.1 \mathrm{v}\end{aligned}d) y_{22} i^{-}Since,\begin{array}{l} I_{2}=y_{21} v_{1}+y_{22} v_{2} \\\Rightarrow \quad y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{v_{1}=0}\end{array}ie., short ciacuit the irput pout and find the conductance ferom the output port:Circuit is:-Now, y_{22}=\frac{I_{2}}{v_{2}}=\frac{1}{R e q}.\begin{array}{l}=40 \|(20+12) \\=4011(32)=\frac{40 \times 32}{40+32}=17.778 \Omega \\\therefore R_{e q}=17.778 \Omega \\\Rightarrow \quad y_{22}=1 / 17.778=0.05825 \\\therefore y_{22}=0.056257 \\\end{array} ...