Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
G(s)=\frac{K(s+1)}{s(s+a)\left(s^{2}+s+1\right)} \quad k=6, a=4Charactaristic equation (E)=1+G(s) H(s)=0\begin{array}{l}1+\frac{k(s+1)}{s(s+a)\left(s^{2}+s+1\right)}=0 \\C \cdot E=s(s+4)\left(s^{2}+s+1\right)+6(s+1)=0 \\s^{4}+5 s^{3}+5 s^{2}+4 s+6 s+6=0 \\s^{4}+5 s^{3}+5 s^{2}+10 s+6=0 \rightarrow \text { No-sign change } \\\end{array}By R=H creteria coption (-wrong)Aurilary equation \Rightarrow 3 s^{2}+6=0=A E\begin{array}{l}\frac{d(A E)}{d s}=0 \Rightarrow 3 \frac{d}{d s} s^{2}+\frac{d}{d s}(\sigma)=3(2 s)+0 \\\frac{d A E)}{d s}=6 s+0 \\\end{array}Anilang Erration 2\begin{array}{l}\text { Imginayy pule }=j \omega=2 \\\operatorname{RHP}(\text { Rigut hand poles) }=0 \rightarrow \text { system is stable } \\\operatorname{LHP}(\text { Lett hand poles) }=2\end{array}No-singn Chang in R+ tabulation \rightarrow option (a) cosrect\rightarrow system is marginallystable because two potes on inaginary axis & No-Righ hand poles, system is stable option (b)So: option E \rightarrow both A \varepsilon B is true-correct correct ...