Solved 1 Answer
See More Answers for FREE
Enhance your learning with StudyX
Receive support from our dedicated community users and experts
See up to 20 answers per week for free
Experience reliable customer service
38.16. Solve: (a) The de Broglie wavelength is\lambda=\frac{h}{p}=\frac{h}{m v}=\frac{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right) v}=1.0 \times 10^{-12} \mathrm{~m} \Rightarrow v=7.3 \times 10^{8} \mathrm{~m} / \mathrm{s}This speed is larger than c, indicating a breakdown of de Broglie's equation. This is an acceptable answer if you haven't studied relativity. However, a better approach would be to use the relativistic form for the momentum, p=\gamma m v. Hence,\begin{aligned}\lambda & =\frac{h}{\gamma m v}=\frac{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \sqrt{1-v^{2} / c^{2}}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right) v}=1.0 \times 10^{-12} \mathrm{~m} \\\Rightarrow \sqrt{1-v^{2} / c^{2}} & =\left(\frac{v}{c}\right) \frac{\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(1.0 \times 10^{-12} \mathrm{~m}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}}=0.4122\left(\frac{v}{c}\right) \\& \Rightarrow 1-\frac{v^{2}}{c^{2}}=0.170 \frac{v^{2}}{c^{2}} \Rightarrow v=0.925 c=2.8 \times 10^{8} \mathrm{~m} / \mathrm{s}\end{aligned}(b) For \lambda=1.0 \times 10^{-9} \mathrm{~m},\lambda=1.0 \times 10^{-9} \mathrm{~m}=\frac{h}{m v}=\frac{6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right) v} \Rightarrow v=7.3 \times 10^{5} \mathrm{~m} / \mathrm{s}(c) Likewise, for \lambda=1.0 \times 10^{-6} \mathrm{~m}, v=7.3 \times 10^{2} \mathrm{~m} / \mathrm{s}.(d) For \lambda=1.0 \times 10^{-3} \mathrm{~m}, v=0.73 \mathrm{~m} / \mathrm{s}. ...